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Overview

→ →

• The utilization of artificial intelligence products such as Large Language Models is projected to grow

400% in the next 5 years.

• In America alone this increased demand is expected to require almost 10% of all power by 2030: a 500%

growth in AI’s energy demand.

• Looking to the brain and biological principles offers a path forward — enabling responsible scaling that is

climate-conscious and equitable.

Research conducted in collaboration with Columbia University, Harvard Medical School, and Oak Ridge National

Laboratory.
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Scaling Energy Infrastructure Today for AI Tomorrow

Meta’s proposed $30B data center in

Louisiana vs. the size of Manhattan

Microsoft secures nuclear power from the Three

Mile Island reactor

$500B U.S. backed ‘Stargate’ data

center initiative

• Demand from AI is delaying modernization of the U.S. power grid, forcing utilities to keep coal-fired

plants online rather than retire them [1].

• Big Tech companies are delaying their net-zero carbon emission goals and are projected to miss future

targets [2].

Why is all of this power even necessary?
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Bigger Models Get Better Results

Models performance scales logarithmically with compute, dataset

size and model-size

Model performance of neural networks w.r.t. compute, dataset size, and model size [3]

Companies exponentially increasing the the size of these models and the compute used to train them to keep up

with scaling laws [4]
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The burdens of AI Energy Demand Disproportionally Hurt Low

Income Areas

Share of Electricity Going to Data Centers by State Share of Income per Household going to electricity

• Data center investment and energy consumption is primarily concentrated in rural areas causing rising

utilities prices

• Rising prices are not coupled with positive investment for these local communities
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What is Being Done To Address the Externalities of the AI

Boom?

Very little

1. ”Eventually, the cost of intelligence... will converge with the cost of energy.”

—Sam Altman

2. The Trump administration’s EPA is actively rekindling U.S. fossil fuel

production to fuel an ”AI arms race with China” [5]

.
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What is Being Done To Address the Externalities of the AI

Boom?

”We are living proof that programs we want LLMs to do are possible” –Terry

Sejnowski

Can biology guide an answer to the side-effects of the AI revolution?
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What Can Neuroscience Tell Us About Computation?

Neuromorphic Computing imitates 3 aspects of our brains for

more efficient computation

• Action potential: A way for encoding complex computation with a sparse set of signals

• Massive Parallelization: The connection of multiple neural pathways enabling for a large amount of multi

tasking

• Spike Time Dependent Plasticity: ”Neurons that fire together wire together”; A biologically plausible way

of learning

What happens when we build software and Hardware Based

on these Processes?

8



What Can Neuroscience Tell Us About Computation?

Neuromorphic Computing imitates 3 aspects of our brains for

more efficient computation

• Action potential: A way for encoding complex computation with a sparse set of signals

• Massive Parallelization: The connection of multiple neural pathways enabling for a large amount of multi

tasking

• Spike Time Dependent Plasticity: ”Neurons that fire together wire together”; A biologically plausible way

of learning

What happens when we build software and Hardware Based

on these Processes?

8



What Can Neuroscience Tell Us About Computation?

Neuromorphic Computing imitates 3 aspects of our brains for

more efficient computation

• Action potential: A way for encoding complex computation with a sparse set of signals

• Massive Parallelization: The connection of multiple neural pathways enabling for a large amount of multi

tasking

• Spike Time Dependent Plasticity: ”Neurons that fire together wire together”; A biologically plausible way

of learning

What happens when we build software and Hardware Based

on these Processes?

8



What Can Neuroscience Tell Us About Computation?

Neuromorphic Computing imitates 3 aspects of our brains for

more efficient computation

• Action potential: A way for encoding complex computation with a sparse set of signals

• Massive Parallelization: The connection of multiple neural pathways enabling for a large amount of multi

tasking

• Spike Time Dependent Plasticity: ”Neurons that fire together wire together”; A biologically plausible way

of learning

What happens when we build software and Hardware Based

on these Processes?

8



What Can Neuroscience Tell Us About Computation?

Neuromorphic Computing imitates 3 aspects of our brains for

more efficient computation

• Action potential: A way for encoding complex computation with a sparse set of signals

• Massive Parallelization: The connection of multiple neural pathways enabling for a large amount of multi

tasking

• Spike Time Dependent Plasticity: ”Neurons that fire together wire together”; A biologically plausible way

of learning

What happens when we build software and Hardware Based

on these Processes?
8



Neuromorphic Computing is an Ultra-Efficient, Brain-Inspired

Approach for Building Hardware and Software

GPU vs. Neuromorphic

• CPUs are not used for machine learning because they do things in series, making learning very slow

• GPUs are the backbone of machine learning because of their parallelized architecture; the dominance of

GPUs is why NVIDIA is worth so much money

• Neuromorphic Chips are customized chips that simulate key neuroscience principles and enable massive

parallelization

If neuromorphic hardware is so much more power efficient while maintaining

performance, what obstacles are preventing widespread adoption of this technology?
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Neuromorphic Hardware Delivers its Energy Efficiency Only

When Paired With Biologically Inspired Algorithms

Classic Neural Network Architecture For Classifying

Handwritten Digits

Spiking Neural Network Architecture For Classifying

Handwritten Digits

• A normal neural network treats each pixel as an input neuron

• Spiking neural networks, inspired by biology, use rate encoding schemes to represent the same

information
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Despite Limited Use, Spiking Neural Networks Have Demon-

strated Promising Results in LLMs

SpikeGPT
• SpikeGPT matched GPT-3’s performance with

10× fewer parameters and 33× less power

during inference [6]

• SNNs have an inductive bias towards

low-frequency functions, generally making them

not optimal for modeling linguistic relationships

[7]

If this works so well, where is the

Neuromorphic revolution?

These neuromorphic language models struggle at modeling

long-range dependencies without a lot of training data
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Traditional Language Models (Transformers) Are Able to

Model Long-Range Dependencies With Few Examples

Long-Range Dependencies are relationships in sequential data

where predictions are dependent on earlier points

Dependency Parsing in

Language Modeling

Word Associations in Harry

Potter Learned by LLM
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Unbounded Excitation in Spiking Neurons Causes Poor Learn-

ing of Long Contexts in Language Modeling Tasks

Samples Needed For PAC Learnability For Popular Language

Modeling Architectures

• As context length grows longer, neuronal activity increases causing nosier and nosier networks

• SNNs don’t have normilzation methods like self-attention

Biology can save the day once again!

This work was recently submitted to BioRxiv and presented at the SHDA Workshop at the International Conference

on Supercomputing (ICS 2025).
13
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We Are Currently Investigating How Mimicking Inhibitory Neu-

rons Can Help SNNs Learn Long-Range Dependencies

Lateral inhibitory processes in real neurons are used to bound endless excitation

Due to its inducing of sparse networks, we believe inhibition is crucial to how

biological systems model long-range dependencies

1. When a neuron spikes it sends inhibitory signals to other neurons in the same

layer

2. Inhibitory layers can be used to reduce neuronal activity helping denoise

networks

Where else does Neuromorphic computing fit into the AI revolution?
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Artificial Intelligence Exists Beyond Just Language Models

Embodied Intelligence is the next frontier for Machine Learning

• The Turing test says a system is intelligent if a human can’t tell whether it’s a machine or a person

• Generally it is understood that LLMs have solved this problem

• The Embodied Turing test states that An AI animal model—whether robotic or in simulation—passes

the test if its behavior is indistinguishable from that of its living counterpart [8]

• This problem remains unsolved

For our purposes we will focus on autonomous driving for our Embodied Turing test
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Current Machine Learning Methods are Either Unsuitable for

Robotics or not Scalable due to their Energy Demands

Robot Controlled via LLM

Vision Model Controlling Waymo

• Controlling a robot through an LLM is a terrible idea

• Embodied intelligence demands on-chip computation and models that are fast, safe, and efficient

• While systems like Waymo can operate effectively on today’s chips, the energy efficiency of neuromorphic

hardware enables intelligence to scale far more

• Neuromorphic computing is a perfect substitute for these types of embodied intelligence
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Autonomous Driving is Already Turning to Neuromorphic Com-

puting For Better Performance on Power Constrained Systems

SNN architecture for autonomous driving

• Large automotive companies such as Mercedes are actively researching Neuromorphic setups for the

future of self-driving [9]

• Neuromorphic computing scales exceptionally well for vision tasks — delivering performance comparable

to classical vision models, but at only a fraction of the energy cost

• Autonomous driving is a leading example of how neuromorphic systems are beginning to rival traditional

architectures in embodied intelligence [10]
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Emulating Convolution Still Demands Many Synapses, Making

Neuromorphic Models Computationally Expensive at Scale

Neuronal Model of

Eye

Spiking Convolution Model
Traditional Convolutional

Network

• Our eyes convolve specific localities using neurons that are hardwired to that location

• SNNs mimic this hard wiring process — but to detect a specific object, the same feature must be

instantiated across many neurons, repeatedly and redundantly

• Traditional convolutional networks do not mimic biology so neurons are not hardwired in the same way

avoiding redundancy

Biological plausibility offers powerful tools for designing more efficient machine

learning architectures, but it shouldn’t be followed blindly

18
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Inspired by complex adaptive systems, we simulate neural cir-

cuits while reproducing convolution-like computation

Wolf Introduction To Yellow Stone National Park

Agent based simulation software for modeling complex

adaptive systems [11]

• SageSim enables modeling of complex adaptive systems through simulating individual agents in the system

• Neuromorphic systems are simply complex adaptive systems

• Convolutional networks can achieve neuromorphic-level energy efficiency—without the computational

burden of hard-wiring synapses—by modeling neurons and synapses through an agent-based architecture

This work is currently being completed by the Learning Systems Group at Oak Ridge National Laboratory.
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This Neuromorphic Convoltuion Architecture Enables Biologi-

cally Realistic Learning

• Gradient descent is the dominant mode of learning deep learning neural networks in traditional and

Neuromorphic settings

• By treating the spiking convolution network as a complex adaptive system we can use spike-time

dependent plasticity to learn the network

• This is more efficient then traditional deep learning and enables continuous learning once the model is

deployed
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Neuromorphic Computing: A Promising but Not Yet Scalable

Solution to AI’s Energy Crisis

Neuromorphic computing presents a better path forward through biology as current

LLMs and robots power demands are unsustainable

Biological representation of an SNN learning

compositional language

Humaniod Robot Utilizing Spiking and Neuromorphic

Hardware

Despite all this hype, Neuromorphic computing is considered the nuclear fusion of

computer science: it over promises and under delivers

21
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What Can We Do To Bring to Effectuate This Change?

1. Carbon taxes that incentivize big tech companies to search for alternatives

2. Push for better funding for this basic research

3. Ultimately, we need to convince an administration hostile to climate change

that it is in their best interest to embrace this technology

Let’s open this up to a broader discussion — not just questions about the work itself,

but also your thoughts on the societal, technical, and policy implications of

neuromorphic computing, and whether this is truly a direction we want to pursue and

accelerate
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Thank You For Listening!
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