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e The utilization of artificial intelligence products such as Large Language Models is projected to grow
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e The utilization of artificial intelligence products such as Large Language Models is projected to grow
400% in the next 5 years.

e In America alone this increased demand is expected to require almost 10% of all power by 2030: a 500%
growth in Al's energy demand.
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e The utilization of artificial intelligence products such as Large Language Models is projected to grow
400% in the next 5 years.

e In America alone this increased demand is expected to require almost 10% of all power by 2030: a 500%

growth in Al's energy demand.

o Looking to the brain and biological principles offers a path forward — enabling responsible scaling that is
climate-conscious and equitable.



[rpw— wem Al Growth In
667.74M FOCUS

s20.2m
1

ssom $1.3Tl
N ALORVEN SALES BY 2032 —>
2010

2372 2%
OF COMPANIES WORLDWIDE
UsER!

05 a6 27 2 209 20

DIGITALSILX

e The utilization of artificial intelligence products such as Large Language Models is projected to grow
400% in the next 5 years.

e In America alone this increased demand is expected to require almost 10% of all power by 2030: a 500%
growth in Al's energy demand.

o Looking to the brain and biological principles offers a path forward — enabling responsible scaling that is
climate-conscious and equitable.
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Research conducted in collaboration with Columbia University, Harvard Medical School, and Oak Ridge National
Laboratory.



Scaling Energy Infrastructure Today for Al Tomorrow

Hyperion Data Center .
over Manhattan

Meta's proposed $30B data center in Microsoft secures nuclear power from the Three $500B U.S. backed ‘Stargate’ data

Louisiana vs. the size of Manhattan Mile Island reactor center initiative

e Demand from Al is delaying modernization of the U.S. power grid, forcing utilities to keep coal-fired
plants online rather than retire them [1].
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Why is all of this power even necessary?



Bigger Models Get Better Results

Models performance scales logarithmically with compute, dataset
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IGGER Al MODELS
Companies exponentially increasing the the size of these models and the compute used to train them to keep up 4

with scaling laws [4]



The burdens of Al Energy Demand Disproportionally Hurt Low

Income Areas

Projected Data Center Share of State Electricity Consumption in 2030

-~

(=
10-18%

15-20%
20

Share of Electricity Going to Data Centers by State Share of Income per Household going to electricity

o Data center investment and energy consumption is primarily concentrated in rural areas causing rising
utilities prices
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Projected Data Center Share of State Electricity Consumption in 2030
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o Data center investment and energy consumption is primarily concentrated in rural areas causing rising
utilities prices

e Rising prices are not coupled with positive investment for these local communities
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Electricity required

310 GWh

ChatGPT queries, all users per year

912,500,000,000

Equivalentto
powering 29,000
U.Shomes

ChatGPT - §

Very little

1, @ Eventually, the cost of intelligence... will converge with the cost of energy.”
—Sam Altman

2. The Trump administration’s EPA is actively rekindling U.S. fossil fuel
production to fuel an " Al arms race with China” [5].
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What is Being Done To Address the Externalities of the Al

Boom?

”We are living proof that programs we want LLMs to do are possible” —Terry
Sejnowski

These LLMs are a poor imitation of human
thinking. Can we take advantage of this fact?

people

~20 Watts for All 20 Watts for 50 E;'é’rv;yMé'ﬁ.Tld 310 GWHs per
Daily Functions i ear
y Queries We Save? Y

Can biology guide an answer to the side-effects of the Al revolution?
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Neuromorphic Computing imitates 3 aspects of our brains for
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e Action potential: A way for encoding complex computation with a sparse set of signals

e Massive Parallelization: The connection of multiple neural pathways enabling for a large amount of multi
tasking

e Spike Time Dependent Plasticity: " Neurons that fire together wire together”; A biologically plausible way
of learning

What happens when we build software and Hardware Based
on these Processes?
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o CPUs are not used for machine learning because they do things in series, making learning very slow
e GPUs are the backbone of machine learning because of their parallelized architecture; the dominance of

GPUs is why NVIDIA is worth so much money
e Neuromorphic Chips are customized chips that simulate key neuroscience principles and enable massive

parallelization
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CPUs are not used for machine learning because they do things in series, making learning very slow

GPUs are the backbone of machine learning because of their parallelized architecture; the dominance of
GPUs is why NVIDIA is worth so much money
Neuromorphic Chips are customized chips that simulate key neuroscience principles and enable massive

parallelization

If neuromorphic hardware is so much more power efficient while maintaining
performance, what obstacles are preventing widespread adoption of this technology?
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Neuromorphic Hardware Delivers its Energy Efficiency Only

When Paired With Biologically Inspired Algorithms

WTA network
(lateral inhibition)

Classic Neural Network Architecture For Classifying Spiking Neural Network Architecture For Classifying

Handwritten Digits Handwritten Digits

o A normal neural network treats each pixel as an input neuron

e Spiking neural networks, inspired by biology, use rate encoding schemes to represent the same
information

10
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These neuromorphic language models struggle at modeling
long-range dependencies without a lot of training data
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Traditional Language Models (Transformers) Are Able

Model Long-Range Dependencies With Few Examples

Long-Range Dependencies are relationships in sequential data
where predictions are dependent on earlier points

Dependency Parsing in Word Associations in Harry
Language Modeling Potter Learned by LLM

<START>Mr and Mrs Dursley, of number four, Privet Drive, were proud to say
that thev were perfectly normal. thank vou verv much. Thev were the last
people vou'd expect to be involved in anvthing stranae or mysterious. because
thev iust didn't hold with such nonsense. Mr Dursley was the director of a firm
called Grunninas. which made drills. He was a bia. beefy man with hardiv anv
neck, althouah he did have a verv larae moustache. Mrs Durslev was thin and
blonde and had nearly twice the usual amount of neck, which came in very
useful as she spent so much of her time cranina over aarden fences, spvina on
Joh n saw the dog the neighbours. The Durslevs had a small son called Dudlev and in their opinion

there was no finer boy anywhere. The Durslevs had everything they wanted,
but thev also had a secret. and their areatest fear was that somebody would
discover it. They didn't think they could bear it if anvone found out about the
Potters. Mrs Potter was Mrs Durslev's sister. but they hadn't met for several
vears:; in fact, Mrs Dursley pretended she didn't have a sister, because her
sister and her aood- for-nothina husband were as unDurslevish as it was
possible to be. The Durslevs shuddered to think what the neighbours would say
if the/Patters arrived in the street. The Durslevs knew that the Potters had a
small son. too. but they had never even seen him. This bov was another good
reason for keeping the Potters away; they didn’t want Dudley mixing with a
child like that.

PropN Verb Det Noun
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Unbounded Excitation in Spiking Neurons Causes Poor Learn-

ing of Long Contexts in Language Modeling Tasks

Samples Needed For PAC Learnability For Popular Language
Modeling Architectures
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This work was recently submitted to BioRxiv and presented at the SHDA Workshop at the International Conference 13
on Supercomputing (ICS 2025).
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Unbounded Excitation in Spiking Neurons Causes Poor Learn-

ing of Long Contexts in Language Modeling Tasks

Samples Needed For PAC Learnability For Popular Language
Modeling Architectures

—— SNN
— RNN
— Transformer

Sample Complexity

2 4 6 8 10
Context Length

o As context length grows longer, neuronal activity increases causing nosier and nosier networks
o SNNs don’t have normilzation methods like self-attention

Biology can save the day once again!

This work was recently submitted to BioRxiv and presented at the SHDA Workshop at the International Conference 13
on Supercomputing (ICS 2025).
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2. Inhibitory layers can be used to reduce neuronal activity helping denoise
networks
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Where else does Neuromorphic computing fit into the Al revolution?
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Embodied Intelligence is the next frontier for Machine Learning

Turing test Embodied Turing test

5@ ge-

o The Turing test says a system is intelligent if a human can’t tell whether it’s a machine or a person

o Generally it is understood that LLMs have solved this problem

o The Embodied Turing test states that An Al animal model—whether robotic or in simulation—passes
the test if its behavior is indistinguishable from that of its living counterpart [8]

o This problem remains unsolved

For our purposes we will focus on autonomous driving for our Embodied Turing test

ii5)
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Robot Controlled via LLM
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4 SENDMOVEMENTCOMMANDS - START EXPLORATION

Vision Model Controlling Waymo

+ GOTOWAYPOINT -+ HUMAN-READABLE FEEDBACK - SUMMARISE ROBOT DATA

— LLMAPICOSTS — REQUIRES NETWORK CONNECTION

e Controlling a robot through an LLM is a terrible idea
o Embodied intelligence demands on-chip computation and models that are fast, safe, and efficient

o While systems like Waymo can operate effectively on today’s chips, the energy efficiency of neuromorphic
hardware enables intelligence to scale far more

e Neuromorphic computing is a perfect substitute for these types of embodied intelligence

16



Autonomous Driving is Already Turning to Neuromorphic Com-

puting For Better Performance on Power Constrained Systems

a Physics-aware simulation f Control Modules. \
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SNN architecture for autonomous driving
e Large automotive companies such as Mercedes are actively researching Neuromorphic setups for the
future of self-driving [9]

o Neuromorphic computing scales exceptionally well for vision tasks — delivering performance comparable
to classical vision models, but at only a fraction of the energy cost

@ Autonomous driving is a leading example of how neuromorphic systems are beginning to rival traditional
architectures in embodied intelligence [10]
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Emulating Convolution Still Demands Many Synapses, Making

Neuromorphic Models Computationally Expensive at Scale

Neuronal Model of
Eye

Spiking Convolution Model

H

o

e Y
Classifier

= Feature
Pacling  piscovery

Convolution
o Our eyes convolve specific localities using neurons that are hardwired to that location

e SNNs mimic this hard wiring process — but to detect a specific object, the same feature must be
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e Traditional convolutional networks do not mimic biology so neurons are not hardwired in the same way
avoiding redundancy

18



Emulating Convolution Still Demands Many Synapses, Making

Neuromorphic Models Computationally Expensive at Scale

Neuronal Model of Traditional Convolutional
Eye

Spiking Convolution Model
Network

B
t <]

Feature
‘2 Discovery

Convolution

o Our eyes convolve specific localities using neurons that are hardwired to that location

e SNNs mimic this hard wiring process — but to detect a specific object, the same feature must be
instantiated across many neurons, repeatedly and redundantly

e Traditional convolutional networks do not mimic biology so neurons are not hardwired in the same way
avoiding redundancy

Biological plausibility offers powerful tools for designing more efficient machine
learning architectures, but it shouldn’t be followed blindly
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Inspired by complex adaptive systems, we simulate neural cir-

cuits while reproducing convolution-like computation

SAGE sim

SCALABLE AGENT-BASED GPU ENABLED SIMULATOR

Agent based simulation software for modeling complex

adaptive systems [11]

Wolf Introduction To Yellow Stone National Park

® SageSim enables modeling of complex adaptive systems through simulating individual agents in the system

This work is currently being completed by the Learning Systems Group at Oak Ridge National Laboratory.
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Inspired by complex adaptive systems, we simulate neural cir-
cuits while reproducing convolution-like computation

SAGE sim

SCALABLE AGENT-BASED GPU ENABLED SIMULATOR

Agent based simulation software for modeling complex

adaptive systems [11]

Wolf Introduction To Yellow Stone National Park

® SageSim enables modeling of complex adaptive systems through simulating individual agents in the system
e Neuromorphic systems are simply complex adaptive systems

e Convolutional networks can achieve neuromorphic-level energy efficiency—without the computational
burden of hard-wiring synapses—by modeling neurons and synapses through an agent-based architecture

This work is currently being completed by the Learning Systems Group at Oak Ridge National Laboratory.

19



This Neuromorphic Convoltuion Architecture Enables Biologi-
cally Realistic Learning

o Gradient descent is the dominant mode of learning deep learning neural networks in traditional and
Neuromorphic settings
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e Gradient descent is the dominant mode of learning deep learning neural networks in traditional and
Neuromorphic settings

o By treating the spiking convolution network as a complex adaptive system we can use spike-time
dependent plasticity to learn the network

e This is more efficient then traditional deep learning and enables continuous learning once the model is

deployed
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Neuromorphic Computing: A Promising but Not Yet Scalable

Solution to Al’s Energy Crisis

Neuromorphic computing presents a better path forward through biology as current
LLMs and robots power demands are unsustainable
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Neuromorphic Computing: A Promising but Not Yet Scalable

Solution to Al’s Energy Crisis

Neuromorphic computing presents a better path forward through biology as current
LLMs and robots power demands are unsustainable
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Despite all this hype, Neuromorphic computing is considered the nuclear fusion of
computer science: it over promises and under delivers
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Neuromorphic Computing: A Promising but Not Yet Scalable

Solution to Al’s Energy Crisis

By 2030 global Neuromorphic hardware sales will represent less
then 7% of global GPU sales

Global Neuromorphic Computing Market

Size, by Deployment, 2021- 2032, (USD Billion) 26.02 Bn
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By 2030 global Neuromorphic hardware sales will represent less
then 7% of global GPU sales
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Neuromorphic computing still has significant ground to cover
before it can become a viable competitor to today’s SOTA Al
models and infrastructure 22



What Can We Do To Bring to Effectuate This Change?

1. Carbon taxes that incentivize big tech companies to search for alternatives
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What Can We Do To Bring to Effectuate This Change?

1. Carbon taxes that incentivize big tech companies to search for alternatives
2. Push for better funding for this basic research

3. Ultimately, we need to convince an administration hostile to climate change
that it is in their best interest to embrace this technology

Let's open this up to a broader discussion — not just questions about the work itself,
but also your thoughts on the societal, technical, and policy implications of
neuromorphic computing, and whether this is truly a direction we want to pursue and

accelerate
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Thank You For Listening!
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