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State Space Models and Mealy Machines

State Space Models have become popular in recent years as a promising
alternative to Transformers [1, 2]

Unlike Mealy Machines, these models parameterize a continuous state space

Despite this, their update dynamics are both input and state dependent

Mealy
Representation

State Space Update Dynamics

State Space models and Mealy machines are ”learned” very differently, yet
much of their computational behavior is very similar
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How well do these two machines ”learn” various reactive
systems

Mealy machines are usually synthesized, but in a data-rich, spec-poor world,
we construct them through active and passive automata learning [3]

Unlike Mealy machines, SSMs learn using gradient descent

SSMs struggle at learning regular language problems that automata learning
for Mealy machines performs well in [4, 5]

We use SyntComp benchmarks to compare automata learning and gradient
descent methods for reactive systems, identifying which problem classes each
learns best

RPNI Passive
Learning

Active Learning
Gradient Descent
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Analyzing sample complexity reveals how effectively each
algorithm learns reactive systems

Passive and Active learning are much more sample efficient compared to
gradient based learning for SSMs

Passive Learning 1,000 samples, SSM Learning 10,000 samples

Why should we care about this?
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Projecting automata into Euclidean space enables SSMs to
learn more complex reactive behaviors

Prior work has embedded DFAs into continuous spaces [6, 7]. We aim
to leverage this to transfer safety guarantees and initialize SSMs for
faster convergence

Graphic Showing Embedding of Automata for Deep Learning [7]

Recent SSM advances stem from effective initialization (e.g., HiPPO
[8]). In this vein, we aim to leverage automata sample efficiency to
better warm start SSMs
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