Automata Learning Meets State Space Machines

William Fishell¹ Mark Santolucito²

¹Columbia University ²Columbia University, Barnard College

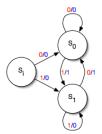
October 7th

 State Space Models have become popular in recent years as a promising alternative to Transformers [1, 2]

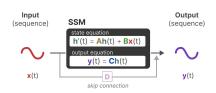
- State Space Models have become popular in recent years as a promising alternative to Transformers [1, 2]
- Unlike Mealy Machines, these models parameterize a continuous state space

- State Space Models have become popular in recent years as a promising alternative to Transformers [1, 2]
- Unlike Mealy Machines, these models parameterize a continuous state space
- Despite this, their update dynamics are both input and state dependent

- State Space Models have become popular in recent years as a promising alternative to Transformers [1, 2]
- Unlike Mealy Machines, these models parameterize a continuous state space
- Despite this, their update dynamics are both input and state dependent

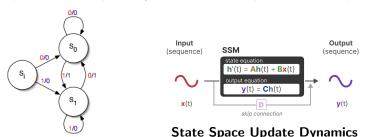


Mealy Representation



State Space Update Dynamics

- State Space Models have become popular in recent years as a promising alternative to Transformers [1, 2]
- Unlike Mealy Machines, these models parameterize a continuous state space
- Despite this, their update dynamics are both input and state dependent



Mealy Representation

 State Space models and Mealy machines are "learned" very differently, yet much of their computational behavior is very similar

• Mealy machines are usually synthesized, but in a data-rich, spec-poor world, we construct them through active and passive automata learning [3]

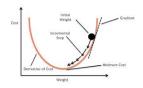
- Mealy machines are usually synthesized, but in a data-rich, spec-poor world, we construct them through active and passive automata learning [3]
- Unlike Mealy machines, SSMs learn using gradient descent

- Mealy machines are usually synthesized, but in a data-rich, spec-poor world, we construct them through active and passive automata learning [3]
- Unlike Mealy machines, SSMs learn using gradient descent
- SSMs struggle at learning regular language problems that automata learning for Mealy machines performs well in [4, 5]

- Mealy machines are usually synthesized, but in a data-rich, spec-poor world, we construct them through active and passive automata learning [3]
- Unlike Mealy machines, SSMs learn using gradient descent
- SSMs struggle at learning regular language problems that automata learning for Mealy machines performs well in [4, 5]
- We use SyntComp benchmarks to compare automata learning and gradient descent methods for reactive systems, identifying which problem classes each learns best

RPNI Passive Learning

Active Learning

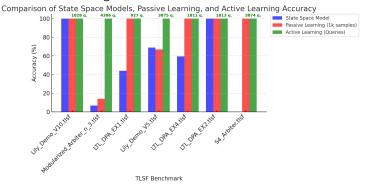


Gradient Descent

Gradient Descent

Analyzing sample complexity reveals how effectively each algorithm learns reactive systems

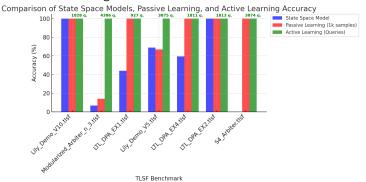
 Passive and Active learning are much more sample efficient compared to gradient based learning for SSMs



Passive Learning 1,000 samples, SSM Learning 10,000 samples

Analyzing sample complexity reveals how effectively each algorithm learns reactive systems

 Passive and Active learning are much more sample efficient compared to gradient based learning for SSMs

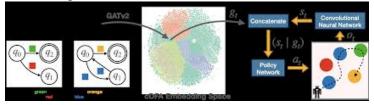


Passive Learning 1,000 samples, SSM Learning 10,000 samples

• Why should we care about this?

Projecting automata into Euclidean space enables SSMs to learn more complex reactive behaviors

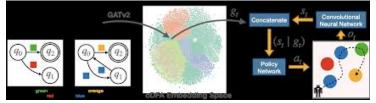
 Prior work has embedded DFAs into continuous spaces [6, 7]. We aim to leverage this to transfer safety guarantees and initialize SSMs for faster convergence



Graphic Showing Embedding of Automata for Deep Learning [7]

Projecting automata into Euclidean space enables SSMs to learn more complex reactive behaviors

 Prior work has embedded DFAs into continuous spaces [6, 7]. We aim to leverage this to transfer safety guarantees and initialize SSMs for faster convergence



Graphic Showing Embedding of Automata for Deep Learning [7]

Recent SSM advances stem from effective initialization (e.g., HiPPO [8]). In this vein, we aim to leverage automata sample efficiency to better warm start SSMs

- A. Gu and T. Dao, "Mamba: Linear-time sequence modeling with selective state spaces," arXiv preprint arXiv:2312.00752, 2023.
- A. Gu, K. Goel, and C. Ré, "Efficiently modeling long sequences with structured state spaces," arXiv preprint arXiv:2111.00396, 2021.
- E. Muškardin, B. K. Aichernig, I. Pill, A. Pferscher, and M. Tappler, "Aalpy: an active automata learning library," *Innovations in Systems and Software Engineering*, vol. 18, no. 3, pp. 417–426, 2022.
- M. Hahn, "Theoretical limitations of self-attention in neural sequence models," *Transactions of the Association for Computational Linguistics*, vol. 8, pp. 156–171, 2020.
- N. Nishikawa and T. Suzuki, "State space models are provably comparable to transformers in dynamic token selection," *arXiv* preprint *arXiv*:2405.19036, 2024.
- C. W. Omlin and C. L. Giles, "Constructing deterministic finite-state automata in recurrent neural networks," *Journal of the ACM (JACM)*, vol. 43, no. 6, pp. 937–972, 1996.

