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State Space Models and Mealy Machines

@ State Space Models have become popular in recent years as a promising
alternative to Transformers [1, 2]
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@ State Space models and Mealy machines are "learned” very differently, yet
much of their computational behavior is very similar
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How well do these two machines "learn” various reactive

systems

@ Mealy machines are usually synthesized, but in a data-rich, spec-poor world,
we construct them through active and passive automata learning [3]
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How well do these two machines "learn” various reactive

systems

@ Mealy machines are usually synthesized, but in a data-rich, spec-poor world,
we construct them through active and passive automata learning [3]

@ Unlike Mealy machines, SSMs learn using gradient descent

@ SSMs struggle at learning regular language problems that automata learning
for Mealy machines performs well in [4, 5]

@ We use SyntComp benchmarks to compare automata learning and gradient
descent methods for reactive systems, identifying which problem classes each

learns best
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Analyzing sample complexity reveals how effectively each

algorithm learns reactive systems

@ Passive and Active learning are much more sample efficient compared to
gradient based learning for SSMs

Comparison of State Space Models, Passive Learning, and Active Learning Accuracy
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@ Why should we care about this?
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Projecting automata into Euclidean space enables SSMs to

learn more complex reactive behaviors

@ Prior work has embedded DFAs into continuous spaces [6, 7]. We aim
to leverage this to transfer safety guarantees and initialize SSMs for
faster convergence

Graphic Showing Embedding of Automata for Deep Learning [7]
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@ Prior work has embedded DFAs into continuous spaces [6, 7]. We aim
to leverage this to transfer safety guarantees and initialize SSMs for
faster convergence

Graphic Showing Embedding of Automata for Deep Learning [7]

@ Recent SSM advances stem from effective initialization (e.g., HiIPPO
[8])- In this vein, we aim to leverage automata sample efficiency to
better warm start SSMs
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