Spiking Neural Networks Are Not Transformers
(Yet):
The Architectural Problems For SNNs in Modeling Long-Range
Dependencies

William Fishell

June 8, 2025

1/65



Combined with auto-regressive prompting, LLMs trained on
predicting the next token transcend mere auto-complete tools

2/65



Combined with auto-regressive prompting, LLMs trained on
predicting the next token transcend mere auto-complete tools

Auto-regressive
Next-Token
Prediction: A
Frozen Example

3/65



Combined with auto-regressive prompting, LLMs trained on
predicting the next token transcend mere auto-complete tools

Auto-regressive Auto-Regressive LLM Next-Token Models
Next-Token Can Perform Higher Reasoning
Prediction: A T

Frozen Example e 77 (7

equals 12,01 4,05 2
Answer: 12013492

Sanduiches!

Thats what T

L s
i

4/65
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predicting the next token transcend mere auto-complete tools

Auto-regressive Auto-Regressive LLM Next-Token Models
Next-Token Can Perform Higher Reasoning
Prediction: A Ty

(81411046 10048 1000)= MobEL 'ACC. (EXACTIPER-DIGIT)

MLP-775M 96.9%199.5%

12013492 GPT35 12%

GPT4: The muldplication of 1394 and 8618
equals 12,01 4,05 2

Answer: 12013492

Frozen Example :

» For any function F that can be computed using a
Turing Machine, there exists a data set D which
approximates F using next-token predictions
(Malach et al.).
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Combined with auto-regressive prompting, LLMs trained on
predicting the next token transcend mere auto-complete tools

Auto-regressive Auto-Regressive LLM Next-Token Models
Next-Token Can Perform Higher Reasoning
Prediction: A Ty

(81411046 10048 1000)= MobEL 'ACC. (EXACTIPER-DIGIT)
Frozen Exa m ple MLP-775M 96.9% /99.5%
12013492 GPT35 12%
GPT4: The muldplication of 1394 and 8618
equals 12,01 4,05 2
Answer: 12013492

GPT4* 53% /61 8%
Goar-78* 96.9% 199.2%

» For any function F that can be computed using a
Turing Machine, there exists a data set D which
approximates F using next-token predictions
(Malach et al.).

The large amount of training data coupled with
their focus on next token prediction makes LLMs
uniquely situated for this task.
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The desire to build larger and larger models-specifically Large
Language Models- is driving energy consumption to unsustainable
levels
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If neuromorphic hardware is so much more power efficient while maintaining
performance, what obstacles are preventing widespread adoption of this technology?
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Neuromorphic hardware uses Spiking Neural Networks, biologically
plausible models that evolve in time and emit discrete spikes
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Neuromorphic hardware uses Spiking Neural Networks, biologically
plausible models that evolve in time and emit discrete spikes
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The sparse spiking dynamics in SNNs make them well suited for low powered
neuromorphic hardware and more energy efficient then artificial neural networks
(ANNSs).
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The sparse spiking dynamics in SNNs make them well suited for low powered
neuromorphic hardware and more energy efficient then artificial neural networks
(ANNSs).
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Despite their energy efficiency, SNNs have lagged behind ANNs in
state of the art performance in language modeling
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power during inference
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» SpikeFormer and similar SNN-based
Transformer designs fail to resolve these
issues because SNNs’ sequential integration
conflicts with self-attention.
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Despite their energy efficiency, SNNs have lagged behind ANNs in
state of the art performance in language modeling

SpikeGPT Zhang &
Eshraghian et al.

Linear

Add & Norm

Spiking RFFN

Add & Norm
‘ Spiking RWKY
Binary
Embedding

Input

P> SpikeGPT matched GPT-3's performance
with 10x fewer parameters and 33x less
power during inference

» SpikeFormer and similar SNN-based
Transformer designs fail to resolve these
issues because SNNs’ sequential integration
conflicts with self-attention.

»> SNNs have an inductive bias towards
low-frequency functions, which is not optimal
for modeling sparse long-range dependencies
(Latham et al.)
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Long-Range Dependencies are relationships in sequential data
where predictions are dependent on points much earlier

Dependency Parsing in
Language Modeling
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Long-Range Dependencies are relationships in sequential data
where predictions are dependent on points much earlier

Dependency Parsing in
Language Modeling

John saw the dog

PropN Verb Det Noun

Value-weighted attention scores
for attention head in MLP

<START>Mr and Mrs Dursley, of number four, Privet Drive, were proud to say
that thev were perfectly normal, thank vou very much. They were the last
people vou'd expect to be involved in anvthing stranae or mysterious, because
they just didn't hold with such nonsense. Mr Dursley was the director of a firm
called Grunnings. which made drills. He was a bia. beefy man with hardlv anv
neck, althouah he did have a verv larae moustache. Mrs Durslev was thin and
blonde and had nearly twice the usual amount of neck, which came in very
useful as she spent so much of her time cranina over aarden fences, spvina on
the neighbours. The Durslevs had a small son called Dudlev and in their opinion
there was no finer boy anywhere. The Dursleys had evervthing they wanted,
but thev also had a secret, and their areatest fear was that somebody would
discover it. They didn't think they could bear it if anvone found out about the
Potters. Mrs Potter was Mrs Dursley's sister, but they hadn't met for several
vears; in fact, Mrs Dursley pretended she didn't have a sister, because her
sister and her good- for-nothina husband were as unDurslevish as it was
possible to be. The Durslevs shuddered to think what the neiahbours would say
if the'Potters arrived in the street. The Dursleys knew that the Potters had a
small son. too. but they had never even seen him. This bov was another aood
reason for keeping the Potters away; they didn't want Dudley mixing with a
child like that

24 /65



Long-Range Dependencies are relationships in sequential data
where predictions are dependent on points much earlier

Dependency Parsing in
Language Modeling

John saw the dog

PropN Verb Det Noun

Value-weighted attention scores
for attention head in MLP

<START>Mr and Mrs Dursley, of number four, Privet Drive, were proud to say
that thev were perfectly normal, thank vou very much. They were the last
people vou'd expect to be involved in anvthing stranae or mysterious, because
they just didn't hold with such nonsense. Mr Dursley was the director of a firm
called Grunnings. which made drills. He was a bia. beefy man with hardlv anv
neck, althouah he did have a verv larae moustache. Mrs Durslev was thin and
blonde and had nearly twice the usual amount of neck, which came in very
useful as she spent so much of her time cranina over aarden fences, spvina on
the neighbours. The Durslevs had a small son called Dudley and in their opinion
there was no finer bov anywhere. The Dursleys had everything they wanted,
but thev also had a secret, and their areatest fear was that somebody would
discover it. They didn't think they could bear it if anvone found out about the
Potters. Mrs Potter was Mrs Dursley's sister, but they hadn't met for several
vears; in fact, Mrs Dursley pretended she didn't have a sister, because her
sister and her good- for-nothina husband were as unDurslevish as it was
possible to be. The Durslevs shuddered to think what the neiahbours would say
if the'Potters arrived in the street. The Dursleys knew that the Potters had a
small son. too. but they had never even seen him. This bov was another aood
reason for keeping the Potters away; they didn't want Dudley mixing with a
child like that

Language modeling is dependent on a sparse set of long-range dependencies, thus
strong language modeling is contingent on modeling long-range dependencies well.
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Transformers can learn long-range dependencies modeling
sequences of length T given O(log(T)) samples
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Transformers can learn long-range dependencies modeling
sequences of length T given O(log(T)) samples
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Transformers can learn long-range dependencies modeling
sequences of length T given O(log(T)) samples

Per-example attention weights

107 . . .
i i !
107!
1072
10-? | |
1074

107°

attention weight

10°®

1077

0 10 20 30 40 50
Boolean input index t

P> Per-index attention weights over 300 length-50

boolean vectors with important indices 5, 20, 30.

Self-attention’s sparsity bias lets Transformers capture long-range dependencies in
lengthy contexts, making them effective for language modeling (Edelman et al.).
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Learning-theory research in SNN architectures lags behind ANNSs;
understanding SNNs is crucial to improving them
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Learning-theory research in SNN architectures lags behind ANNSs;

understanding SNNs is crucial to improving them
Unlike Transformers and RNNs, there is no analysis of how SNNs model long-range

dependencies

The discontinuity in these networks makes many classical approaches unusable
RNN & Transformer Sample Complexity With Respect to Context Length

Ssample Complexity

This work analyzes SNNs to understand how sample complexity varies with respect to
context length in SNNs illustrating how well these architectures model long-range

dependencies

—— RNN
—— Transformer

2 1 6 8 10
Context Length
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Covering-number bounds can be used to measure how sample
complexity of a class varies with input length

log N(g; Fa, || - o) = ©(d log(L/e)).
I

d log(L log(1/6
s(L/2) | los(1/0))

n(e, o) = o(
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Covering-number bounds can be used to measure how sample
complexity of a class varies with input length

log N(g; Fa, || - o) = ©(d log(L/e)).
I

n(e,8) = O(dloigL/s) n Iog(;/é))

Covering a Function Class With ¢ balls

\ O
Covering-number arguments place a collection of small e-balls (in the visual they use
0) so that every function lies within one of these € balls

35/65



Covering-number bounds can be used to measure how sample
complexity of a class varies with input length

log N(g; Fa, || - o) = ©(d log(L/e)).
I

d log(L/¢) log(1/0)
n(e,0) = o =5 + 22,
Covering a Function Class With ¢ balls

\ O
Covering-number arguments place a collection of small e-balls (in the visual they use
0) so that every function lies within one of these € balls

Analyzing an SNN via covering-number techniques reveals how effectively it learns
increasingly long contexts.
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Non Leaky-Integrate-&-Fire networks (nLIF)-a type of SNN-are
locally Lipschitz continuous between pre & post synaptic layers

Important Terminology

37/65



Non Leaky-Integrate-&-Fire networks (nLIF)-a type of SNN-are
locally Lipschitz continuous between pre & post synaptic layers

Important Terminology

Non Leaky-Integrate-&-Fire: This is a simplification of SNN
neuronal dynamics where the built up weight in a neuron does not leak

away over time

38/65



Non Leaky-Integrate-&-Fire networks (nLIF)-a type of SNN-are
locally Lipschitz continuous between pre & post synaptic layers

Important Terminology

Non Leaky-Integrate-&-Fire: This is a simplification of SNN
neuronal dynamics where the built up weight in a neuron does not leak
away over time

Causal Set: The set of spike times and neurons denoted C/ in layer
¢ — 1 that contributed to neuron nj's spiking

39/65



Non Leaky-Integrate-&-Fire networks (nLIF)-a type of SNN-are
locally Lipschitz continuous between pre & post synaptic layers

Important Terminology

Non Leaky-Integrate-&-Fire: This is a simplification of SNN
neuronal dynamics where the built up weight in a neuron does not leak
away over time

Causal Set: The set of spike times and neurons denoted C/ in layer
¢ — 1 that contributed to neuron nj's spiking

| 676) — €O, (e < 21671 ma(F, %) 2= bll,_ (e

PIC™) =

For an SNN, local Lipschitz continuity in spike times is equivalent to
local Lipschitz continuity of the function measured by those spike times
(Dold et al.)
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Non Leaky-Integrate-&-Fire networks (nLIF)-a type of SNN-are
locally Lipschitz continuous between pre & post synaptic layers

Important Terminology

Non Leaky-Integrate-&-Fire: This is a simplification of SNN
neuronal dynamics where the built up weight in a neuron does not leak
away over time

Causal Set: The set of spike times and neurons denoted C/ in layer
¢ — 1 that contributed to neuron nj's spiking

0 (0) 0 W
| 676) — €O, (e < 21671 ma(F, %) 2= bll,_ (e
For an SNN, local Lipschitz continuity in spike times is equivalent to
local Lipschitz continuity of the function measured by those spike times

(Dold et al.)

Importantly this equation expresses a relationship between
Lipschitz continuity and spike time integration
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Problem Motivation

If we can extend the local Lipschitz continuity between pre
and post synpatic layers to be globally Lipschitz across the
entire network, then we can say something about the
relationship between spiking dynamics and long-range
dependencies
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A globally Lipschitz SNN can be constructed and illustrates how the
covering number changes as a function of the spiking dynamics

Architecture Assumptions

Let
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A globally Lipschitz SNN can be constructed and illustrates how the
covering number changes as a function of the spiking dynamics

Architecture Assumptions
Let
1. the network be a feedforward nLIF SNN

2. M be a set of training examples s.t.

VnenLIF, 3m; € M: F(m;) = neuron n spikes

3. all synaptic weights W,-f- are positive and, for every causal piece
P,

Z wij — 9 > §>0.
(ij)erP
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A globally Lipschitz SNN can be constructed and illustrates how the
covering number changes as a function of the spiking dynamics

Architecture Assumptions
Let
1. the network be a feedforward nLIF SNN

2. M be a set of training examples s.t.

VnenLIF, 3m; € M: F(m;) = neuron n spikes

3. all synaptic weights W,-f- are positive and, for every causal piece
P,
Y owp -9 > >0
(ij)erP

4. the reset for a neuron's membrane after spiking is
instantaneous
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Theorem 1

Theorem (Global Lipschitz Continous)

Under Assumptions, there exists a constant Lgiohal S.t. for any two
input-spike patterns a, b with |a— b|.__ <7,

‘ TOUtPu'E(a) - Toutput(b)|Loo < Lglobal la— b|Loo
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Proof Sketch: Global Lipschitz Bound for nLIF SNN

Consider the simple case where each input neuron receives at most a single input spike

Proof.
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Proof Sketch: Global Lipschitz Bound for nLIF SNN

Consider the simple case where each input neuron receives at most a single input spike

Proof.

1. Each neuron n,, in the output layer is locally Lipschitz continuous with the set
of pre synaptic neurons that contributed to its spiking

2. 3 a d margin across all the thresholds and the causal set of each of these output
neurons is non empty we can construct a Layer Lipschitz bound across this layer
by taking the B
W
Loutlayer = 2% ml.ax(‘ C,e’ max(?v ES))
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Proof Sketch: Global Lipschitz Bound for nLIF SNN

Consider the simple case where each input neuron receives at most a single input spike

Proof.

1. Each neuron n,, in the output layer is locally Lipschitz continuous with the set
of pre synaptic neurons that contributed to its spiking
2. 3 a d margin across all the thresholds and the causal set of each of these output
neurons is non empty we can construct a Layer Lipschitz bound across this layer
by taking the B
W
YA s
Loutlayer = 2% miax(‘C,- ’ max(T7 E>)
3. any presynaptic inputs a,b € P(C?P") s.t |[a— b|,_ < § are locally Lipschitz
continuous for neuron nf s.t.

|Tf£(a) - Tie(b)‘Loc < Loutlayer|a = bl1,

This can be traced recursively through the layers towards the input by
telescoping and taking the max for each layer s.t.

D _
w
Laiobal = H max(‘Cf) max(—7 E)) covers the entire network
el 6 4

52/65



Proof Sketch: Global Lipschitz Bound for nLIF SNN

Consider the simple case where each input neuron receives at most a single input spike

Proof.

1. Each neuron n,, in the output layer is locally Lipschitz continuous with the set
of pre synaptic neurons that contributed to its spiking
2. 3 a d margin across all the thresholds and the causal set of each of these output
neurons is non empty we can construct a Layer Lipschitz bound across this layer
by taking the B
W
YA s
Loutlayer = 2% miax(‘C,- ’ max(T7 E>)
3. any presynaptic inputs a,b € P(C?P") s.t |[a— b|,_ < § are locally Lipschitz
continuous for neuron nf s.t.

|Tf£(a) - Tie(b)‘Loc < Loutlayer|a = bl1,

This can be traced recursively through the layers towards the input by
telescoping and taking the max for each layer s.t.

D _
w
Laiobal = H max(‘Cf) max(—7 E)) covers the entire network
el 6 4

4. Since ¢ is a free term, it can be arbitrarily defined s.t. any ~ space of interest is
covered by a global lipschitz constant
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Growth in the context length T increases the global Lipschitz constant
exponentially causing a O(T?2) growth in sample complexity
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Growth in the context length T increases the global Lipschitz constant
exponentially causing a O(T?2) growth in sample complexity
Theorem (Global Lipschitz constant for long-range spike trains)

Under the assumptions, there exists a constant Lgiohals S.t. for any two multi-spike
input patterns a, b of length T,

|Toutput(a) - Toutput(b)|Loo < LglobalS ‘a - b|Loo
Here, LgiohaiT is the global Lipschitz constant for the sequence-based encoding of

length |S|, and it satisfies

;
LglobarT = O(L‘glclbal)

where Lgonal is the global Lipschitz constant established for a context length of 1.
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Growth in the context length T increases the global Lipschitz constant
exponentially causing a O(T?2) growth in sample complexity
Theorem (Global Lipschitz constant for long-range spike trains)

Under the assumptions, there exists a constant Lgiohals S.t. for any two multi-spike
input patterns a, b of length T,

|Toutput(a) - Toutput(b)|Loo < LglobalS ‘a - b|Loo

Here, LgiohaiT is the global Lipschitz constant for the sequence-based encoding of
length |S|, and it satisfies
_ [T]
Lgiobarr = O(Lyigpa1)
where Lgonal is the global Lipschitz constant established for a context length of 1.

Recall this relationship between sample complexity and Lipschitz constant

_ d log(L/e) log(1/6)
n(e,8) = o( SRR e )
Thus the sample complexity for this problem can be rewritten as
T log(1/4)
M = O(D * | T|log(Lgy) + = 55 )
M = O(D = | T|? log(Lgiobar)
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Growth in the context length T increases the global Lipschitz constant

exponentially causing a O(T?2) growth in sample complexity

Visualization of the impact of the difference in sample
complexity of SNNs VS. RNNs VS. Transformers
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» The driver of quadratic sample complexity is the uncontrolled excitation in
neurons in the nLIF architecture
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Growth in the context length T increases the global Lipschitz constant

exponentially causing a O(T?2) growth in sample complexity
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» The driver of quadratic sample complexity is the uncontrolled excitation in

neurons in the nLIF architecture
> This excitation is a problem in all SNNs not only our idealized SNN
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Growth in the context length T increases the global Lipschitz constant

exponentially causing a O(T?2) growth in sample complexity
Visualization of the impact of the difference in sample

Sample Complexity
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» The driver of quadratic sample complexity is the uncontrolled excitation in
neurons in the nLIF architecture

> This excitation is a problem in all SNNs not only our idealized SNN
» Specialized models which try and incorporate attention or other sparsity

inducing measures cannot solve this fundemental problem of sequential
integration in SNNs
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Unbounded excitation in spiking neurons is the driver of poor
sample complexity bounds in learning from long context windows
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Due to its inducing of sparse networks we believe this process is crucial to how
biological systems models long range dependencies
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Unbounded excitation in spiking neurons is the driver of poor
sample complexity bounds in learning from long context windows

Lateral Inhibitory processes in real neurons are used to bound endless excitation

Due to its inducing of sparse networks we believe this process is crucial to how
biological systems models long range dependencies
{a) A single layer of neurons (k) Lateral inhibition
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1. When a neuron spikes it sends inhibitory signals to other neurons in the same
layer

2. Inhibitory layers can be used to bound the causal set of the neurons in a
network, and thus bound the global Lipchitz constant
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Next Steps & Discussion

Energy Consumption of ML
Models

s

» Wider adoption of neuromorphic hardware is necessary as energy use becomes a
bottleneck in using machine learning models

» SNNs are key to unlocking neuromorphic potential

64/65



Next Steps & Discussion

Energy Consumption of ML Lateral Inhibition Layer Design
Models
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» Wider adoption of neuromorphic hardware is necessary as energy use becomes a
bottleneck in using machine learning models

» SNNs are key to unlocking neuromorphic potential

> Lateral inhibitory processes have been used in SNNs to achieve higher accuracy
on classic computer vision problems (Liu et al.).

» Building off this work, we aim to build inhibitory layers for sequence modeling
tasks to test whether this is an effective way of improving Long Range
dependencies
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