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Combined with auto-regressive prompting, LLMs trained on
predicting the next token transcend mere auto-complete tools

Auto-regressive
Next-Token
Prediction: A

Frozen Example

Auto-Regressive LLM Next-Token Models
Can Perform Higher Reasoning

� For any function F that can be computed using a
Turing Machine, there exists a data set D which
approximates F using next-token predictions
(Malach et al.).

� The large amount of training data coupled with
their focus on next token prediction makes LLMs
uniquely situated for this task.
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The desire to build larger and larger models-specifically Large
Language Models- is driving energy consumption to unsustainable
levels

Growing Compute Demands of
AI

GPU vs. Neuromorphic

If neuromorphic hardware is so much more power efficient while maintaining
performance, what obstacles are preventing widespread adoption of this technology?
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Neuromorphic hardware uses Spiking Neural Networks, biologically
plausible models that evolve in time and emit discrete spikes

Feedforward Spiking Neural
Network (SNN)

Single Neuron Spiking Dynamics

SNNs learn via surrogate gradients and
backpropagation through time (BPTT)

The sparse spiking dynamics in SNNs make them well suited for low powered
neuromorphic hardware and more energy efficient then artificial neural networks
(ANNs).
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Despite their energy efficiency, SNNs have lagged behind ANNs in
state of the art performance in language modeling

SpikeGPT Zhang &
Eshraghian et al. ▶ SpikeGPT matched GPT-3’s performance

with 10× fewer parameters and 33× less
power during inference

▶ SpikeFormer and similar SNN-based
Transformer designs fail to resolve these
issues because SNNs’ sequential integration
conflicts with self-attention.

▶ SNNs have an inductive bias towards
low-frequency functions, which is not optimal
for modeling sparse long-range dependencies
(Latham et al.)

16 / 65



Despite their energy efficiency, SNNs have lagged behind ANNs in
state of the art performance in language modeling

SpikeGPT Zhang &
Eshraghian et al. ▶ SpikeGPT matched GPT-3’s performance

with 10× fewer parameters and 33× less
power during inference

▶ SpikeFormer and similar SNN-based
Transformer designs fail to resolve these
issues because SNNs’ sequential integration
conflicts with self-attention.

▶ SNNs have an inductive bias towards
low-frequency functions, which is not optimal
for modeling sparse long-range dependencies
(Latham et al.)

17 / 65



Despite their energy efficiency, SNNs have lagged behind ANNs in
state of the art performance in language modeling

SpikeGPT Zhang &
Eshraghian et al. ▶ SpikeGPT matched GPT-3’s performance

with 10× fewer parameters and 33× less
power during inference

▶ SpikeFormer and similar SNN-based
Transformer designs fail to resolve these
issues because SNNs’ sequential integration
conflicts with self-attention.

▶ SNNs have an inductive bias towards
low-frequency functions, which is not optimal
for modeling sparse long-range dependencies
(Latham et al.)

18 / 65



Long-Range Dependencies are relationships in sequential data
where predictions are dependent on points much earlier

Dependency Parsing in
Language Modeling

Value-weighted attention scores
for attention head in MLP

Language modeling is dependent on a sparse set of long-range dependencies, thus
strong language modeling is contingent on modeling long-range dependencies well.
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Transformers can learn long-range dependencies modeling
sequences of length T given O(log(T )) samples

� 3-way AND: Given a Boolean sequence of length

T with a hidden rule, the model must identify the

three elements whose ∧ conjunction determines the

output with perfect accuracy on the sample set

� Per-index attention weights over 300 length-50

boolean vectors with important indices 5, 20, 30.

Self-attention’s sparsity bias lets Transformers capture long-range dependencies in
lengthy contexts, making them effective for language modeling (Edelman et al.).
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Learning-theory research in SNN architectures lags behind ANNs;
understanding SNNs is crucial to improving them

Unlike Transformers and RNNs, there is no analysis of how SNNs model long-range
dependencies

The discontinuity in these networks makes many classical approaches unusable
RNN & Transformer Sample Complexity With Respect to Context Length

This work analyzes SNNs to understand how sample complexity varies with respect to
context length in SNNs illustrating how well these architectures model long-range
dependencies
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Covering-number bounds can be used to measure how sample
complexity of a class varies with input length

logN
(
ε;Fd , ∥ · ∥∞

)
= Θ

(
d log(L/ε)

)
.

⇓

n(ε, δ) = O
(d log(L/ε)

ε2
+

log(1/δ)

ε2

)
.

Covering a Function Class With ϵ balls

Covering-number arguments place a collection of small ϵ-balls (in the visual they use
δ) so that every function lies within one of these ϵ balls

Analyzing an SNN via covering-number techniques reveals how effectively it learns
increasingly long contexts.
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Non Leaky-Integrate-&-Fire networks (nLIF)–a type of SNN–are
locally Lipschitz continuous between pre & post synaptic layers

Important Terminology

Non Leaky-Integrate-&-Fire: This is a simplification of SNN
neuronal dynamics where the built up weight in a neuron does not leak
away over time

Causal Set: The set of spike times and neurons denoted C ℓ
i in layer

ℓ− 1 that contributed to neuron niℓ’s spiking∥∥ t(ℓ)i (a) − t
(ℓ)
i (b)

∥∥
L∞

(
P[C

(ℓ)
i ]

) ≤ 2 |C (ℓ)
i | max

(
W̄
δ , τs

δ

) ∥∥ a− b
∥∥
L∞

(
P[C

(ℓ)
i ]

)
For an SNN, local Lipschitz continuity in spike times is equivalent to
local Lipschitz continuity of the function measured by those spike times
(Dold et al.)

Importantly this equation expresses a relationship between
Lipschitz continuity and spike time integration
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Problem Motivation

If we can extend the local Lipschitz continuity between pre
and post synpatic layers to be globally Lipschitz across the

entire network, then we can say something about the
relationship between spiking dynamics and long-range

dependencies
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A globally Lipschitz SNN can be constructed and illustrates how the
covering number changes as a function of the spiking dynamics

Architecture Assumptions

Let

1. the network be a feedforward nLIF SNN

2. M be a set of training examples s.t.

∀ n ∈ nLIF, ∃mi ∈ M : F (mi ) =⇒ neuron n spikes

3. all synaptic weights w ℓ
ij are positive and, for every causal piece

P, ∑
(i ,j)∈P

wL
ij − ϑ > δ > 0.

4. the reset for a neuron’s membrane after spiking is
instantaneous
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Theorem 1

Theorem (Global Lipschitz Continous)

Under Assumptions, there exists a constant Lglobal s.t. for any two
input-spike patterns a, b with |a− b|L∞ ≤ γ,∣∣Toutput(a)− Toutput(b)

∣∣
L∞

≤ Lglobal |a− b|L∞
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Proof Sketch: Global Lipschitz Bound for nLIF SNN
Consider the simple case where each input neuron receives at most a single input spike

Proof.

1. Each neuron niout in the output layer is locally Lipschitz continuous with the set
of pre synaptic neurons that contributed to its spiking

2. ∃ a δ margin across all the thresholds and the causal set of each of these output
neurons is non empty we can construct a Layer Lipschitz bound across this layer
by taking the

Loutlayer = 2 ∗max
i

(
∣∣∣C ℓ

i

∣∣∣ max
(W̄

δ
,
τs

δ

)
).

3. any presynaptic inputs a,b ∈ P(Coutput
i ) s.t |a− b|L∞ ≤ δ are locally Lipschitz

continuous for neuron nℓi s.t.

|T ℓ
i (a)− T ℓ

i (b)|L∞ ≤ Loutlayer |a− b|L∞

This can be traced recursively through the layers towards the input by
telescoping and taking the max for each layer s.t.

LGlobal =
D∏

ℓ=1

max
i

(
∣∣∣C ℓ

i

∣∣∣ max
(W̄

δ
,
τs

δ

)
). covers the entire network

4. Since δ is a free term, it can be arbitrarily defined s.t. any γ space of interest is
covered by a global lipschitz constant
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i ) s.t |a− b|L∞ ≤ δ are locally Lipschitz

continuous for neuron nℓi s.t.

|T ℓ
i (a)− T ℓ

i (b)|L∞ ≤ Loutlayer |a− b|L∞

This can be traced recursively through the layers towards the input by
telescoping and taking the max for each layer s.t.

LGlobal =
D∏

ℓ=1

max
i

(
∣∣∣C ℓ

i

∣∣∣ max
(W̄

δ
,
τs

δ

)
). covers the entire network

4. Since δ is a free term, it can be arbitrarily defined s.t. any γ space of interest is
covered by a global lipschitz constant
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Growth in the context length T increases the global Lipschitz constant
exponentially causing a O(T 2) growth in sample complexity

Theorem (Global Lipschitz constant for long-range spike trains)
Under the assumptions, there exists a constant LglobalS s.t. for any two multi-spike
input patterns a, b of length T,∣∣Toutput(a)− Toutput(b)

∣∣
L∞

≤ LglobalS |a− b|L∞

Here, LglobalT is the global Lipschitz constant for the sequence-based encoding of
length |S|, and it satisfies

LglobalT = O
(
L
|T |
global

)
where Lglobal is the global Lipschitz constant established for a context length of 1.

Recall this relationship between sample complexity and Lipschitz constant

n(ε, δ) = O
(d log(L/ε)

ε2
+

log(1/δ)

ε2

)
.

Thus the sample complexity for this problem can be rewritten as

M = O(D ∗ |T | log(L|T |
Global ) +

log(1/δ)

ε2

)
M ≈ O(D ∗ |T |2 log(LGlobal )
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Growth in the context length T increases the global Lipschitz constant
exponentially causing a O(T 2) growth in sample complexity

Visualization of the impact of the difference in sample
complexity of SNNs VS. RNNs VS. Transformers

▶ The driver of quadratic sample complexity is the uncontrolled excitation in
neurons in the nLIF architecture

▶ This excitation is a problem in all SNNs not only our idealized SNN
▶ Specialized models which try and incorporate attention or other sparsity

inducing measures cannot solve this fundemental problem of sequential
integration in SNNs
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Unbounded excitation in spiking neurons is the driver of poor
sample complexity bounds in learning from long context windows

Lateral Inhibitory processes in real neurons are used to bound endless excitation

Due to its inducing of sparse networks we believe this process is crucial to how
biological systems models long range dependencies

1. When a neuron spikes it sends inhibitory signals to other neurons in the same
layer

2. Inhibitory layers can be used to bound the causal set of the neurons in a
network, and thus bound the global Lipchitz constant
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Next Steps & Discussion

Energy Consumption of ML
Models

▶ Wider adoption of neuromorphic hardware is necessary as energy use becomes a
bottleneck in using machine learning models

▶ SNNs are key to unlocking neuromorphic potential
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Next Steps & Discussion

Energy Consumption of ML
Models

Lateral Inhibition Layer Design

▶ Wider adoption of neuromorphic hardware is necessary as energy use becomes a
bottleneck in using machine learning models

▶ SNNs are key to unlocking neuromorphic potential

▶ Lateral inhibitory processes have been used in SNNs to achieve higher accuracy
on classic computer vision problems (Liu et al.).

▶ Building off this work, we aim to build inhibitory layers for sequence modeling
tasks to test whether this is an effective way of improving Long Range
dependencies
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