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Abstract

Spiking Neural Networks (SNNs) have gained increasing attention for their ability to operate on
low-power neuromorphic hardware, offering a pathway toward energy-efficient large language models
(LLMs). However, they continue to underperform state-of-the-art artificial neural networks (ANNs) on
tasks such as language modeling, limiting their broader adoption. Here, we present an explicit covering-
number analysis of SNNs, focusing on the non-leaky integrate-and fire (nLIF) model. Building on recent
advances in causal-piece analysis and local Lipschitz continuity, we derive a global Lipschitz constant
for nLIF networks and extend this framework from single-token inputs to full sequences. Our analysis
reveals that the sample complexity of nLIF architectures grows quadratically with sequence length, in
contrast to the linear or logarithmic scaling observed in recurrent and Transformer models. These findings
expose a fundamental architectural limitation in SNNs and suggest targeted architectural and biological
modifications needed to overcome it. Finally, we show that the same assumptions emerge in biological
circuits, emphasizing the critical role of inhibitory interactions in enabling efficient learning of long-range
dependencies.
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Introduction

References to biology have been important in pushing the bounds of machine learning models. From the
application of the Hebbian learning rule in Hopfield networks to the convolutional filters that emulate local
receptive fields in the visual cortex, modern deep-learning models continually draw practical inspiration from
biological systems. Although strict biological realism isn’t required—many innovations like self-attention and
gradient descent have no direct counterpart in real neurons—grounding our algorithms in biological principles
offers clear benefits: by drawing on decades of neuroscience research, we can uncover efficient mechanisms
for learning and adaptation, and by emulating evolution’s optimizations for energy use, robustness, and
adaptability, we can design models that are both powerful and resource-efficient.

Spiking Neural Networks (SNN)—often called the “third generation” of neural models—offer greater bi-
ological realism than standard artificial neural networks (ANN). These networks achieve remarkable energy
efficiency by emitting sparse, temporally distributed spikes—much like biological action potentials. Their
built-in sparsity and sequential processing stand in stark contrast to the O(N2) complexity of Transformer
self-attention and the billions of operations required during large-language-model inference. SNNs have al-
ready achieved promising results, such as SpikeGPT, which achieves performance comparable to GPT-3 while
using 33 times less power [1]. Furthermore, these networks leverage both temporal and spatial dependencies
and include a richer set of programmable parameters—such as delays and neuron-specific thresholds—which
endows them with greater expressiveness than recurrent neural networks of the same depth and width [2, 3].

Despite the potential for increased expressivity, SNNs struggle from many of the same limitations that
RNNs have: a finite memory horizon [4], and the inability to model non-sequential interaction [5]. These is-
sues in SNNs have caused them to struggle with modeling long-term dependencies. Creating wider adoption
of these networks requires devising modifications that solve these issues. Inspired by Edelman et al. [6], we
use a learning-theoretic approach to understand how learning varies with sequence length. Measuring the
change in the number of samples required to achieve PAC learnability as a function of the sequence length
of those samples indicates how well the SNN architecture models long-range dependencies. While prior
work on the VC-dimension of SNNs has established foundational capacity bounds [7, 2, 8, 9], it has largely
overlooked the role of sequence length and has not explored covering-number approaches. In this work, we
leverage recent results on the local Lipschitz continuity of SNNs [10] to derive a covering-number bound,
establishing a novel relationship between sample complexity and sequence length. Our analysis provides
new theoretical insights into SNNs and helps explain their current limitations in language modeling tasks
compared to Transformers and RNNs.

An SNN processes information as time-stamped spike trains instead of static real-valued activations. Each
neuron integrates incoming weighted spikes from the preceding layer, accumulating a membrane potential:
this potential decays continuously. When it exceeds a fixed threshold, the neuron emits a spike and transmits
its associated edge weights to downstream connections after a time delay ∆t. This characteristic of the SNN
results in sparse network activity. As each spike train passes through, only some of the neurons fire. Because
the computation unfolds in continuous time, the network’s state —and thus its output —depend on the
moment of observation by the output layer. We focus on the non-leaky and leaky integrate-and-fire (nLIF,
LIF) neuron models—the most widely adopted spiking neuron models. Although all SNNs share the pipeline
sketched above, they diverge in their spike-encoding schemes and in the synaptic delays they assume. The
LIF model captures these ingredients in their simplest canonical form and underlies many of the more
sophisticated spiking architectures encountered in practice (for a more detailed overview of the specifics of
SNNs and LIFs, see App. A). The nLIF is a simpler form of the LIF that does not have a leaky membrane
potential (for a formal definition of nLIFs see App. C).
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Results

1 Pseudo-Attention in the Leaky Integrate-&-Fire Model

The LIF architecture enables earlier tokens to influence later ones by effectively ’attending’ to them and
thus modifying the state of the network1. Although this mechanism is not identical to traditional attention,
several similarities are noteworthy. At its simplest, an attention mechanism quantifies the similarity between
pairs of tokens in the context. Suppose tokens c1 and c2 occur at positions i and i+ n, so

ti = i∆t, tj = (i+ n)∆t.

We represent their embeddings as instantaneous spike-train vectors.

S(ti) =
[
S1[i], . . . , SD[i]

]T
, S(tj) =

[
S1[j], . . . , SD[j]

]T
.

The scaled dot product does not occur in the LIF, but at S(ti), the spike train raises the membrane poten-
tials of its active subset of neurons, so when S(tj) arrives, the neurons that represent these two tokens are
more likely to fire. In contrast, if the overlap is small, fewer neurons will spike at time tj representing their
similarity. The state of the network at any time t is defined as a function of both the temporal dynamics
and the contextual input, where the interactions between all pairs ci and cj are inherently present. Based
on the described behavior, the LIF architecture strikes a balance between an RNN and a Transformer in
expressing non-sequential interactions. Unlike an RNN, the LIF model supports some non-sequential com-
putation. However, its inherent sequential nature — stemming from how tokens feed into the network as
spike trains — makes it impossible to realize the attention mechanism fully. Furthermore, the introduc-
tion of distance between two tokens can introduce noise, which can affect the network state and obscure
comparisons between tokens in the LIF architecture, thereby acting as a further barrier to attention in SNNs.

Conceptually, the LIF architecture can be viewed as having a kind of short-term memory. Because each
neuron’s membrane potential carries over across time steps, it retains a faint trace of recent activity. That
carry-over creates limited non-sequential interactions, enough for nearby events to influence one another,
though without forming true recurrence. In this sense, LIF neurons offer a weak analog of attention, pro-
viding selective temporal weighting without explicit dot-product computations, in contrast to the query–key
matching used in Transformers. This produces short-range contextual effects that resemble attention kernels
in their temporal weighting but remain strictly sequential in operation. Variability in spike timing with
temporal distance can introduce noise that may obscure these effects, and a quantitative comparison with
attention mechanisms is left for future work.

2 Sample Complexity of SNNs, Transformers, and RNNs

The VC dimension of a feedforward spiking neural network with K synaptic edges grows tightly on the
order of Θ(K2) [11, 8]. Intuitively, this quadratic scaling reflects the vast combinatorial flexibility afforded
by programmable parameters—each weight, delay, and threshold setting contributes to carving out distinct
decision regions, allowing the network to shatter on the order of K2 input points. Although Maass’ original
proof focused on the nLIF model, the same argument holds for the standard LIF architecture: introducing
additional programmable leak parameters can only maintain or increase the network’s expressive capacity.
Furthermore, this does not increase the VC dimension of the SNN, as the leaks function simply as another
programmable parameter (for more details on why this is the case, see App. B). There is a strong understand-
ing of the expressive capacity of the SNN, yet comparatively little research on how this capacity changes as
the size of the inputs being modeled changes. Transformers and RNNs have well-understood bounds on how
the number of samples required to achieve PAC learnability scales with the input sample size. RNNs require

1The same pseudo-attention phenomena in an LIF exist in an nLIF. We focus on the LIF to avoid redundancy.

3



linear growth in the size of an input in the number of samples to achieve PAC learnability as the sequence
size grows. Transformers achieve an even more impressive log(T ) sample increase requirement for modeling
longer sequences [6, 12]1. Unlike Transformers, which have an inductive bias towards sparsity, SNNs have
an inductive bias towards low-frequency functions [13]. This inductive bias indicates that they may perform
poorly on modeling the relationship between a small set of important input tokens: the long-range depen-
dency modeling task. To date, no analysis has quantified how SNN sample complexity grows with sequence
length. In this work, we fill that gap by deriving explicit bounds for nLIF networks, revealing exactly how
samples must scale as sequences get longer. These insights deepen our theoretical understanding of spiking
architectures and help explain their inherent bias toward low-frequency mappings.

2.1 Non Leaky Integrate-&-Fire Covering Number

Under appropriate assumptions on our function class, we show that an nLIF SNN is globally Lipschitz
continuous. We then derive the covering-number for both single-token and multi-token inputs and compare
them to quantify how sample complexity scales with sequence length. Henceforth, we refer to the single-
input-token setting as the Single Input Spike (SIS) problem and the multi-input-token setting as the Multi
Input Spike (MIS) problem.

2.2 SIS Covering Number

The output spike time of an nLIF neuron can be made locally Lipschitz continuous by restricting attention
to the specific subset of its inputs and weights that actually cause it to fire. From this, we show, with
proper assumptions, the global Lipschitz constant and derive the covering number for the SIS case, and then
extend to the MIS problem. Our work builds on work that proves local Lipschitz continuity with respect to
weight and input spike time for an output spike time in an nLIF SNN. In deriving the covering number, we
introduce common terminology used for the remainder of the paper.

A causal piece, denoted as P, for neuron i in layer ℓ is the set of all pre-synaptic spike-time vectors
and weights that lead to its firing:(

t
(ℓ−1)
i , W

(ℓ)
i

)
∈ RNℓ−1 ×W(ℓ)

i s.t. these inputs cause neuron i in layer ℓ to spike.

Its causal set is the set of pre-synaptic neuron spike times whose spikes precede its firing time:

C
(ℓ)
i

(
t
(ℓ−1)
1 , . . . , t

(ℓ−1)
Nℓ−1

)
= { j | t(ℓ−1)

j ≤ t
(ℓ)
i }.

Lastly a causal path, denoted P ℓ
i , for neuron i in layer ℓ is the set

P ℓ
i =

{(
t1j , . . . t

(ℓ−1)
j , W 1

j , . . .W
(ℓ)
j

)
∈ RNℓ−1 ×W(ℓ)

i

∣∣∣ these inputs cause neuron i in layer ℓ to spike
}
.

Recent work shows that, when restricted to a fixed causal piece, the output spike-time map is locally Lips-
chitz continuous in those pre-synaptic times and weights2 [10] (For a proof sketch and further details on this
paper, see Appendix C).

Given a causal set for some neuron in layer ℓ that spikes at time T , the causal set is locally Lipschitz
continuous with respect to its causal piece.

Let
a =

(
t
(ℓ−1)
j , W

(ℓ)
ij

)
j∈P |C(out)

i |, b =
(
t′j

(ℓ−1), W ′(ℓ)
ij

)
j∈P |Ciℓ(out)|

1When we say RNN, we are referring to a vanilla RNN
2pre-synaptic here simply means the immediate previous layer. This work uses a telescoping method to extend the Lipschitz

bounds

4



be two configurations of pre-synaptic spike times and weights on the causal piece (P |C(out)
L | and satisfy∥∥a− b

∥∥
L∞

(
P [C

(out)
i ]

) ≤ δ < min
j∈P [C

(out)
i ]

( ∑
k∈P [C

(out)
i ]

W
(ℓ)
jk − ϑ

)

So that any perturbation of size at most δ neither delays an originally–causal pre-synaptic spike past the
output time T nor advances a non-causal spike before T . The total weighted input stays above the threshold,

so the neuron still fires at T . Then the output spike-time map t
(out)
L : (t(L−1),W (L)) 7→ tL is locally Lipschitz

continuous on that piece, with∥∥ t(out)i (a) − t
(out)
i (b)

∥∥
L∞

(
P [C

(out)
i ]

) ≤ 2 |C(out)
i | max

(
W̄
δ , τs

δ

) ∥∥ a− b
∥∥
L∞

(
P [C

(out)
i ]

) (1)

where
W̄ = max(WL

ij ) , τs = Synaptic time Constant

Assumption 2.1 (Assumptions). Let

1. the network be a feedforward nLIF SNN;

2. M be a set of training examples s.t.

∀n ∈ nLIF, ∃mi ∈M : F (mi) =⇒ neuron n spikes, where F is the network map;

3. each neuron’s causal set Cℓ
n is non-empty;

4. all synaptic weights wℓ
ij are positive and, for every causal piece P ,∑

(i,j)∈P

wL
ij − ϑ > δ > 0.

5. the reset for a neuron’s membrane after spiking is instantaneous

Theorem 2.1 (Global Lipschitz Bound). Under Assumption 2.1, there exists a constant Lglobal s.t. for any
two input-spike patterns a, b with |a− b|L∞ ≤ γ,∣∣Toutput(a)− Toutput(b)

∣∣
L∞
≤ Lglobal |a− b|L∞

Proof. Consider the output layer of neurons in the nLIF. By the assumption, each of the neurons in the
output layer has some causal set Cℓ

i that is not empty. Because ∃ a δ margin across all the thresholds and
the causal set of each of these output neurons is non-empty, we can construct a Layer Lipschitz bound across
this layer by taking the

Loutlayer = 2 ∗max
i

(
∣∣∣Cℓ

i

∣∣∣ max
(W̄

δ
,
τs
δ

)
).

thus any pre-synaptic inputs a,b ∈ P (Coutput
i ) s.t |a− b|L∞ ≤ δ are locally Lipschitz continuous for neuron

nℓ
i s.t.

|T ℓ
i (a)− T ℓ

i (b)|L∞ ≤ Loutlayer|a− b|L∞

This can be traced recursively through the layers towards the input by telescoping. Consider a, b are now
input spikes in the causal piece of neuron nℓ−1

j and a, b ∈ PL
i s.t.∣∣Tℓ

(
T (ℓ−1)(a)

)
− Tℓ

(
T (ℓ−1)(b)

)∣∣
L∞
≤ Lℓ

∣∣T (ℓ−1)(a)− T ℓ−1)(b)
∣∣ ≤ Lℓ ∗ Lℓ−1 |a− b|L∞
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with the new bounds on the input that |a − b|L∞ ≤ δ
Lℓ∗Lℓ−1

where Lℓ and Lℓ−1 are defined as the max

Lipschitz constants of their respective layers. By continuing this process to the input layer, we can construct
a global Lipschitz constant for the entire nLIF feedforward network.

LGlobal =

D∏
ℓ=1

max
i

(
∣∣∣Cℓ

i

∣∣∣ max
(W̄

δ
,
τs
δ

)
).

Because any input spikes a, b are in some causal path and all neurons in the network are covered in some
causal path s.t. Lglobal can bound the output spike times of that neuron, Lglobal is a global Lipschitz constant
with respect to spike time and weight for the network. By simply setting our free term γ = δ

LGlobal
, the

differences in the inputs will not cause a change in any causal path, so the entire network is defined by the
global Lipschitz constant Lglobal

|T ℓ
i (a)− T ℓ

i (b)|L∞ ≤ LGlobal|a− b|L∞

Under our assumptions, the nLIF network is globally Lipschitz continuous in the spike-time domain. To
extend this to real-valued inputs and outputs, we compose three Lipschitz maps: an encoder that converts
each real input into a spike train, the nLIF network itself (which is Lipschitz in spike times), and a decoder
that reads the output spike train and maps it back to the target space. Because the composition of Lips-
chitz maps remains Lipschitz, the end-to-end map from original inputs to final outputs is Lipschitz. This
lets us apply standard covering-number bounds directly in the real-valued signal domain. To illustrate the
simplicity of constructing such a composition, we use a toy example of classifying words (for the details of
this Example see App. D).

Example D outlines a process of applying a time to first spike (TTFS) encoding and softmax decoding to
the input and output spaces to create a global Lipschitz constant for the function. Using the composition of
Lipschitz continuous functions and the results from Theorem ??, a function class F can be created from
nLIF SNN, and a covering number can be constructed. Provided the assumptions in 2.1 are met. For each
of these functions in the function class, there is a global Lipschitz constant defined as

Li
total = Li

m Li
global L

i
o, where

Li
m = Lipschitz constant of the input encoder (e.g. TTFS + softmax),

Li
global = Lipschitz constant of the nLIF network in the spike-time domain,

Li
o = Lipschitz constant of the output decoder (e.g. softmax).

By taking the max(Li
global), a Lipschitz constant which covers the entire function class can be derived,

denoted LMaxTotal. Due to our restriction on distinguishing perturbations of at most γ, the covering number
is

logN(γ, F ) ≤ D log(
∆LMaxTotal

γ
)

This bound enables us to control the error within the function, and thus, the sample complexity M becomes

M = O(D log(LMaxTotal)

Crucially, LMaxTotal scales with each layer’s maximum causal-set size. Allowing neurons to fire multiple
times (MIS) rather than just once (SIS) thus induces a pronounced jump in the resulting sample complexity,
because the causal sets grow with respect to the number of input spikes.
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2.3 MIS Covering Number

The MIS problem consists of a sequence of tokens inputted as a spike train, where each token follows the
preceding element after some time delay. Building on Example D, we encode a sequence of tokens into
spike times as follows:

(Sequence-token temporal encoder) ts
(
m

(s),j
i

)
=

m
(s),j
i −min(M j)

max(M j)−min(M j)
T + (s− 1)∆t, s = 1, . . . , S,

This encoding scheme can be implemented using a Dirac delta function to fire pulses at the moments of
interest, as encoded by the sequence-token temporal encoder.

We follow the SIS setup described in Example D by keeping T small enough that a single token can
trigger at most one spike per neuron as it moves through the network. Over a sequence of tokens, however,
a neuron may fire multiple times.

Theorem 2.2 (Global Lipschitz Bound for MIS). Under Assumption 2.1, there exists a constant LglobalS

s.t. for any two multi-spike input patterns a, b of length S,∣∣Toutput(a)− Toutput(b)
∣∣
L∞
≤ LglobalS |a− b|L∞

Here, LglobalS is the global Lipschitz constant for the sequence-based encoding of length |S|, and it satisfies

LglobalS = O
(
L
|S|
global

)
Where Lglobal is the global Lipschitz constant established for the SIS problem on the same nLIF SNN.

This result can be extended by using a composition of Lipschitz-continuous functions to encode and decode
the spike train, as in Example D. In particular, for any sequence S ∈MS , applying the nLIF under suitable
input bounds yields a globally Lipschitz map

f(S) = ϕout

(
nLIF (ϕin(S))

)
,

with constant LFunc s.t.∣∣f(S)− f(S′)
∣∣
L∞
≤ LFunc ∥S − S′∥L∞ , where Lfunc = Lout ∗ Lin ∗ LGlobalS

Theorem 2.3. For any nLIF network for which we can establish global Lipschitz continuity, the worst-case
sample complexity grows quadratically with the sequence length.

Proof. Given a function class F ) For the MIS problem, a global Lipschitz constant can be constructed for
each of the fi in the function class. By taking the maximum of these Lipschitz constants and invoking

Theorem 2.2, the maximum global Lipschitz constant is equal to some O(L
|S|
Global) where LGlobal is the

constant for the SIS case. Thus, the covering number is

logN(γ, F ) ≤ D × |S| log(
∆O(L

|S|
Global)

γ
)

When |S| is the sequence length, applying standard log rules, |S| can be brought down. Thus, the sample
complexity for this problem is

M = O(D ∗ |S|2 log(LGlobal))

Controlling for the input dimension D (the size of each tensor) and the network’s structure by increasing
the sequence length, we need |S|2 more samples to ensure PAC learnability.
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In an nLIF SNN, the D input channels arrive as an S-length spike train whose contributions aggregate into
each neuron’s membrane. In the MIS setting, the global Lipschitz constant compounds by a factor of LSIS

at each of the S spikes—growing as (
LSIS

)S
.

Since the covering-number bound also scales linearly with theDS-dimensional input space, this multiplicative
Lipschitz blow-up combined with the dimension term yields the sample-complexity penalty.

O
(
S2

)
The quadratic sample-complexity growth both illustrates why nLIF SNNs struggle with long-term depen-
dencies and shows that preventing explosive causal set expansion can improve their ability to model such
dependencies. By preventing unbounded excitation, we can cap causal set expansion, thereby bounding
quadratic sample-complexity growth.

Causal pieces are an active area of research, and it is currently not known whether causal pieces in SIS
or MIS LIFs are locally Lipschitz continuous with respect to their causal piece. We leave the question of
sample complexity for an LIF to a later paper, as further research is needed to understand how the causal
set of a neuron grows when it is leaking.

3 Implications for Biological Neural Circuitry

The spiking dynamics of nLIF SNNs lead to weak theoretical guarantees for learning long-range dependen-
cies. By mapping the architectural assumptions of these networks to their biological counterparts, we both
demonstrate the biological plausibility of our framework and identify which additional neural mechanisms
may be required in real circuits to achieve stronger learning guarantees.

3.1 Effect of Refractory Gating and Population Normalization

The refractory period following Na+ activation prevents uncontrolled excitation in neural circuits ([14], [15]).
Despite endogenous limits on neuronal firing, the sequential integration of inputs leads to quadratic scaling.

Lemma 3.1 (Refractory Period Constraint). Let τref > 0 be the refractory period enforcing ∆tmin ≥ τref
between consecutive spikes of neuron i. For a sequence of length |S| with inter-token delay ∆t, the maximum
spike count is:

kmax
i ≤

⌊
T

τref

⌋
=

⌊
|S| ·∆t

τref

⌋
∈ O(|S|)

Despite this constraint, the global Lipschitz constant satisfies:

LglobalS = O
(
L
|S|
global

)
and therefore sample complexity remains:

M = O
(
D|S|2 log(Lglobal)

)
Proof. A neuron can fire at most once per τref interval. Over total time T = |S| · ∆t, this bounds kmax ∈
O(|S|). However, in the MIS proof (Theorem 2.2), causal sets grow as |C(ℓ)

i | ∝ kmax across the sequence.
Thus:

LglobalS ≤
∏
ℓ

(
|C(ℓ)

i | · kmax

)|S|
·max

(
W̄

δ
,
τs
δ

)
≤ (c · kmax)

|S|
= (c ·O(|S|))|S|

= O
(
c′|S|

)
for constant c′

The exponential structure is preserved.
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Lemma 3.1 demonstrates that the refractory period does not induce inactivity in a manner that gets rid of
the exponential |S|. Therefore, quadratic scaling is preserved.

Lemma 3.2 (Population Normalization - Gain Control). Let Nℓ(V) = V/
√
εℓ +

1
nℓ

∑
j V

2
j be a divisive

normalization operator with bounded Jacobian ∥JNℓ
∥ ≤ Gℓ ≤ 2. Normalization ([16], [17]) modifies per-

layer bounds by a constant factor:
Lnorm
ℓ ≤ Gℓ · Lℓ

but preserves the exponential structure for sequences:

Lnorm
globalS = O

(
(G · Lglobal)

|S|
)
= O

(
c|S|

)
Therefore, sample complexity remains quadratic: M = O(D|S|2 log(Lglobal)). This aligns with cortical divi-
sive normalization, demonstrating that biological gain control reduces constants but does not linearize scaling.

At first glance, this behavior appears to be a network saturation problem — something biological systems
would avoid through population-level normalization. However, as shown in Lemma 3.2, the sequential manner
in which these signals are integrated still preserves the exponential growth structure and quadratic scaling,
despite normalization.

Proof of Lemma 3.2. The divisive normalization operator Nℓ has bounded Jacobian ∥JNℓ
∥ ≤ Gℓ ≤ 2. For a

normalized layer fnorm
ℓ = Nℓ ◦ fℓ, the chain rule gives Lnorm

ℓ ≤ Gℓ · Lℓ. Following Theorem 2.2 telescoping
argument for sequence composition:

Lnorm
global,S ≤

|S|∏
ℓ=1

Lnorm
ℓ ≤

|S|∏
ℓ=1

(Gℓ · Lℓ) =

 |S|∏
ℓ=1

Gℓ

 ·
 |S|∏

ℓ=1

Lℓ

 ≤ 2|S| · L|S|
global = (2 · Lglobal)

|S|
= O(c|S|)

By Theorem 2.3, M = O(D · |S|2 · log(c|S|)) = O(D · |S|2) since log(c|S|) = |S| log c absorbs into the quadratic
term. The exponential structure is preserved, demonstrating that biological gain control reduces constants
but does not linearize scaling.

Because the brain is remarkably efficient at modeling language and learning long-range dependencies, we
hypothesize that a third mechanism is present in biological neural nets that enables efficient learning by
bounding uncontrolled excitation.

3.2 Necessity of Inhibitory Structures

Lateral inhibition linearizes the quadratic scaling induced by spiking dynamics, enabling the brain to effi-
ciently learn long-range dependencies.

Lemma 3.3 (Inhibitory Sparsification and Telescoping MIS Bound). Let N be a network with L layers
processing sequences of length |S|. Consider two inhibitory mechanisms ([18]):

1. Per-bin WTA cap: A hard limit sℓ on the number of active neurons per layer per time bin.

2. Threshold boost: Dynamic threshold adjustment

θℓ(t) = θ0,ℓ + βℓ(Kθ ∗ I inhℓ )(t),

where I inhℓ represents inhibitory input (modeling PV/SST interneurons). Then the following hold:

(i) Margin bounds: |C(ℓ)
i | ≤ sℓ−1k

(ℓ−1)
max where k

(ℓ−1)
max is the maximum number of spikes per neuron in

layer ℓ− 1.

9



(ii) Effective margin preservation: The effective margin δeffℓ > 0 remains bounded across layers.

(iii) Telescoping global Lipschitz bound: LglobalS = O
(
L
|S|
global

)
where Lglobal is the single-spike Lipschitz

constant.

(iv) Sample complexity: M = O
(
D|S|2 logLglobal

)
.

Critical distinction: Soft inhibitory mechanisms (WTA caps with sℓ = Ω(|S|) or threshold boosts) reduce
only the constants. To achieve linear scaling, a hard constraint kmax ≤ K = O(1) independent of |S| is
required.

Lemma 3.4 (Linearization via Hard Per-Sequence Cap). Impose a hard constraint kmax ≤ K = O(1)
independent of |S|. Then M = O

(
D|S| logLglobal

)
.

Proof. Consider a neuron nℓ
i processing a sequence of |S| inputs. The first input S1 propagates through the

resting network with local Lipschitz constant:

LCausalPath1 =

L∏
ℓ=1

2max |C(ℓ)
i |max

(W̄
δ
,
τs
δ

)
.

Subsequent inputs encounter neurons with residual membrane potential. The causal set for S2 depends on
that of S1, causing interdependence:∣∣Toutput2(S1, S2)− Toutput2(S

′
1, S

′
2)
∣∣
L∞
≤ (LCausalPath1 ◦ LCausalPath2)∥(S1, S2)− (S′

1, S
′
2)∥L∞ .

Without inhibition, causal sets accumulate contributions from all previous inputs. Telescoping through
S1, . . . , S|S| yields:

LGlobalS = O

( L∏
ℓ=1

max
i
|C(ℓ)

i |
|S| max

(W̄
δ
,
τs
δ

))
= O(L

|S|
global).

Hard cap breaks the telescoping. Impose kmax ≤ K = O(1): each neuron fires at most K times total
across the entire sequence. For any subset of inputs {S1, . . . , Sj} with j ≤ |S|:

|C(ℓ)
i (S1, . . . , Sj)| ≤ sℓ−1K = O(1).

The total spike count is capped, so the per-layer Lipschitz factor remains Llayer,ℓ = O(1), and:

LGlobalS =

L∏
ℓ=1

Llayer,ℓ = O(Lglobal),

independent of |S|.

Sample complexity. The input diameter is diam(X ) = |S| · diam(X1), but the effective dimension is
Deff = O(D1) due to the spike constraint:

logN (γ,F) ≤ D1 log

(
2Lglobal|S|diam(X1)

γ

)
= O(D1 log |S|).

Taking γ ∝ 1/
√
M yields M = O(D1|S| logLglobal), linear in |S|.

To fit this biological explanation into our analysis of spiking dynamics, we must understand whether our
derivation extends from nLIF networks to LIF networks. We are actively researching this extension, but
hypothesize that the same behavior holds: we can always choose a ∆t for our rate encoding that is arbitrarily
smaller than the leak time constant, effectively recovering nLIF-like behavior.
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Discussion

The quadratic scaling of sample complexity with sequence length in nLIF networks highlights their inherent
difficulty in modeling long-term dependencies. Architectural factors — most notably the strictly sequential
integration of inputs drives this growth; normalization can shrink constants but does not alter the sequence-
length exponent. Importantly, our analysis shows that bounding the size of each neuron’s causal set is
a direct route to improved sample efficiency as sequences lengthen. Future work should therefore explore
implementations of inhibitory layers in SNNs. Lateral inhibition has shown promise in computer vision
tasks [19], yet it remains to be tested in language modeling architectures.

Our analysis links common circuit phenomena to formal parameters that govern expressivity and efficiency
in spiking networks. Inhibitory mechanisms, including effects consistent with PV- and SST-class interneuron

activity, can reduce the size of active causal sets (|C(ℓ)
i |; see Lemma 4.3), yielding sparser effective population

codes. Divisive normalization–like gain control can bound per-layer sensitivity via factors Gℓ (Lemma 4.2),
thereby reducing Lipschitz constants Lℓ without altering the sequence-length exponent. Refractory and
leak dynamics (Lemma 4.1) cap the per-neuron spike count kmax, limiting dynamic range but leaving the
quadratic dependence on |S| unchanged unless an explicit hard cap is enforced.

These correspondences suggest that biologically plausible constraints help organize SNN dynamics within
a Lipschitz-bounded regime that supports robustness and learnability. Together, these observations point
toward the efficiency of biologically grounded, brain-inspired architectures, where inhibitory balance, normal-
ization, and refractory dynamics jointly maintain robust and energy-efficient computation while preserving
expressive capacity.

Scope note. All global Lipschitz and covering arguments presented here are proved for nLIF neurons. Ex-
tending to LIF will require establishing local Lipschitz continuity across reset surfaces, which we conjecture
holds in the small-∆t regime with bounded leak.

Conclusion

We presented, to our knowledge, the first covering-number analysis of spiking architectures, establishing a
quadratic sample-complexity bound for nLIF networks for monotone input sequences (MIS). This bound
arises from the growth of causal sets across layers and time, which compounds global Lipschitz factors with
sequence length. In this sense, sequential integrate-and-fire dynamics impose a structural limit on how spik-
ing networks scale with long sequences.

Additionally, the analysis makes explicit how biologically plausible mechanisms map onto these formal pa-
rameters. Inhibitory interactions can sparsify active causal sets, divisive normalization can bound layer
sensitivity and reduce Lipschitz constants, and refractory or leak dynamics can cap the per-neuron spike
count. Together, these constraints shrink constants and, when a hard per-sequence inhibitory cap is en-
forced, can yield linear scaling in sequence length. This identifies concrete levers for architectural design and
neuromorphic deployment.

While our results do not claim that spiking networks cannot capture long-range dependencies, they show
that efficient sequence processing requires mechanisms that limit causal-set growth or otherwise regularize
sensitivity. Assertions about frequency selectivity in language modeling remain hypotheses in this work and
warrant targeted empirical tests.

All global Lipschitz and covering arguments here are proved for nLIF neurons. Extending these results
to standard LIF models will require establishing local Lipschitz continuity across reset surfaces, which we
conjecture holds in the small-∆t regime with bounded leak.

11



More broadly, the correspondences developed here suggest that biologically grounded constraints help orga-
nize spiking network dynamics within a Lipschitz-bounded regime that supports robustness and learnability.
This framework points toward brain-inspired, energy-efficient architectures in which inhibition, normaliza-
tion, and refractory dynamics jointly maintain expressive yet stable computation.
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A Spiking Neural Networks

Definition 1. Spiking Neural Networks (SNN) are biologically plausible neural networks that evolve
continuously in time and emit discrete spikes whenever the membrane potential exceeds a preset threshold.
Their dynamics follow:

dVi(t)

dt
=

1

τm

(
Vrest − Vi(t)

)
+

1

τs

∑
j

wij

∑
tkj+ t∆ij≤t

H
(
t− tkj

)
exp

(
− t−tkj

τs

)
Subject to the reset condition:

if Vi(t
−) ≥ Θi, Vi(t

∗) = Vreset.

τm : Membrane time constant (leak rate).

Vi(t) : Membrane potential of neuron i at time t.

Vrest : Resting (leak) potential.

wij : Synaptic weight from neuron j to neuron i.

tkj : Time of the k-th spike from neuron j.

Ts : Synaptic delay before post-synaptic effect.

H(·) : Heaviside step (spike) function.

τs : Synaptic time constant in α(s).

Θi : Firing threshold for neuron i.

t∆ij : The time it takes for a current to reach a postsynpatic neuron from a pre-synaptic neuron.

Vreset : Reset potential after a spike.∑
j wij External input current to neuron i from all neurons in previous layer.

A.1 Leaky Integrate & Fire Model

There are many biologically realistic neuronal models, but the Leaky Integrate & Fire Model (LIF) is the
most commonly used due to its simplicity. The LIF simulates neuronal behavior by integrating incoming
currents, applying a gradual leak over time, and emitting a spike when the membrane potential exceeds
a set threshold. Unlike traditional artificial neural networks where neurons are updated synchronously, in
the LIF model, neurons accumulate input over time and fire only when sufficient input is gathered to cross
the threshold. The definition used for an SNN follows the same subthreshold dynamics of the membrane
potential in an LIF model:

dVi(t)

dt
=

1

τm

(
Vrest − Vi(t)

)
+

1

τs

∑
j

wij

∑
tkj+t∆ij≤t

H
(
t− tkj

)
exp

(
− t−tkj

τs

)
At time t, if the pre-synaptic neuron j at time tkj reaches it’s threshold, an instantaneous spike is triggered
causing a jump in input current that then decays exponentially over the synaptic time constant τs. Writing
this out:

Ii(t) =
1

τs

∑
j

wij

∑
tkj+∆ij≤t

exp
(
−
t− tkj −∆ij

τs

)
.
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Each pre-synaptic spike at time tkj reaches neuron i only after delay t∆ij
1, then produces a jump in current

that decays exponentially with time constant τs. The delay is a programmable parameter that increases the
expressivity of a spiking neuron [8]. However, for the primary analysis using the covering-number, we treat
this as a fixed parameter.

A.1.1 Spike Trains

Spike trains encode each input by converting its value into the timing and amplitude of Dirac delta pulses,
which are then injected into the network to initiate the spiking process. The spike train is derived through
a procedure that maps real-valued inputs to a tensor of Dirac delta functions.

Consider:

Data Matrix & Time Grid: X ∈ RN×T , t∆ > 0, tk = k t∆,

where t∆ is the inter-spike delay and tk is the kth time point,

Threshold Encoding: Si[k] =

{
1, xi[k] > θi,

0, otherwise,
i = 1, . . . , N, k = 0, . . . , T − 1,

Discrete Spike Vector: S[k] =
[
S1[k], . . . , SN [k]

]T ∈ {0, 1}N ,

Continuous-Time Spike Train: si(t) =

T−1∑
k=0

Si[k] δ
(
t− k t∆

)
, i = 1, . . . , N,

Spike-Train Vector: S(t) =
[
s1(t), . . . , sN (t)

]T
,

Input Current: I(t)1 = W1 S(t).

This process achieves two goals2. First, it binarizes the raw inputs into a sequence of 0/1 spikes. Second,
it embeds those spikes in continuous time by replacing each “1” in the discrete tensor with a Dirac delta at
the appropriate moment. Concretely, for neuron i we write

si(t) =

T−1∑
k=0

Si[k] δ
(
t− k t∆

)
,

so that a “1” at index (i, k) becomes a δ-spike at time t = k t∆. From the network’s point of view, this
is equivalent to feeding it a stream of binary tensors S[0], S[1], . . . , S[T − 1]. By casting those tensors as
continuous spike trains, we naturally capture all temporal dependencies—so the LIF membrane and synaptic
decay dynamics require no extra bookkeeping, because the δ pulses encode precisely when inputs arrive.

Once the membrane potential reaches the threshold θ, the neuron emits a spike and its potential is re-
set:

if v(t) ≥ θ =⇒

{
spike is emitted,

v(t)← vreset.

Importantly, the entire membrane potential process is initiated by the input state spike trains: at each time
step k, the threshold-ed vector S[k] determines which neurons fire—every neuron with Si[k] = 1 emits a
Dirac-δ spike, kick-starting the propagation of signals through the network.

1A time delay represents the time for a signal to be transmitted from a pre-synaptic neuron to a post-synaptic neuron.
These are constant throughout the network and mimic time to travel in actual neuronal communication

2Threshold encoding is for illustrative purposes and is not Lipschitz continuous. Do not use this technique in the function
composition in Section 3.
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A.1.2 Model Output

In order to actually use these networks it is important to understand how to retrieve output values from
them. The output layer is monitored differently depending on the task being performed. For Example,
during classification tasks, we monitor the output layer over a fixed time window T . Let

ni =

T∑
t=1

si(t),

denote the spike count of output neuron i in the window T , where T represents the total elapsed time in the
network. We map these rates to class probabilities with a softmax:

pi =
exp

(
ni

)
C∑

j=1

exp
(
nj

) , i = 1, . . . , C.

For sequence–generation tasks (e.g. language modeling) we take a snapshot of the output layer’s membrane
potentials at the end of the time window. This moment is when the last token propagates entirely through
the network.
Let

Y ′ ∈ Rd

be this membrane potential vector and
W ∈ R|V |×d

the embedding matrix whose v-th row represents vocabulary token v. The logit for token v is

logitv = Y ′ W⊤
v .

The probability assigned to token i is obtained with a soft-max:

P (i) =
exp

(
logiti

)∑
v∈V

exp
(
logitv

) .
Once the spiking outputs are mapped to a probability distribution, training proceeds almost exactly as in a
ANN.
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A.1.3 Surrogate Gradient Descent

The commonly used Heaviside activation function is not differentiable, making it impossible to perform
gradient descent. A commonly used method is to use a differentiable function which approximates the SNN
activation function and use backpropagation through time (BPTT) to learn the weights of the network.

Figure 1: Visualization of Different Commonly Used Surrogate Gradients [20]

This allows the cross-entropy loss gradient to propagate through the network and update the weight values.
Some networks also allow for learnable decay functions, but in the traditional LIF the decay rates and
thresholds are fixed.

B VC Dimension Proof Sketches for Supplementary Results of
SNNs

We give informal sketches of the VC-dimension bounds of SNNs that help motivate our work. These sketches
are not intended as full formal proofs (see the original references for complete arguments), but rather as a
reader’s guide to the key ideas and constructions.

Theorem B.1. For each n one can construct a feedforward spiking-neuron network (SNN) N with O(n)
edges whose VC dimension is Ω(n2). This remains true even if all synaptic weights and firing thresholds are
held fixed.

Proof Sketch. Let
R = {1, 2, . . . , n}, D = R×R = {(k, i) | k, i ∈ R},

and fix any binary labeling stored in the n× n matrix B = [bk,i]. Encode each row k by the delay

dk =

n∑
j=1

bk,j 2
j−n−1.

Inputs. The network has 2n+ 1 input neurons: {X1, . . . , Xn} (row selectors), {Y1, . . . , Yn} (column selec-
tors), and Z (global reference). On presentation of (ek, ei), exactly Xk, Yi, and Z fire at t = 0. The Xk

spike then arrives at the first module Mn after delay dk.

Module Mm (bit-extraction). Each module Mm (m = n, n− 1, . . . , 1) does the following:
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• IN1: data spike at

t = rm =

m∑
j=1

bk,j 2
j−n−1.

• IN2: reference spike from Z at t = 0.

• OUT2: if bk,m = 1, emits at t = rm.

• OUT1: emits at

t = (2 + 2β + 2γ) + rm−1, rm−1 =

m−1∑
j=1

bk,j 2
j−n−1,

and forwards this to Mm−1.

Coincidence detection. For each column i, neuron Ci receives:

OUT2i at t = ri, Yi-spike delayed to t = ri.

With unit weights and threshold 2, Ci fires exactly at t = ri if and only if bk,i = 1. No other Cj can fire.

Thus each (k, i) is correctly labeled by whether Ci spikes, and since we can choose all n2 bits arbitrarily via
the delays {dk}, the network shatters D using only O(n) edges [11].

While these constructions are stated for non-leaky neurons, they rely solely on programmable delays and
hence carry over to leaky membranes without loss of generality. Moreover, since adding programmable
weights and thresholds cannot reduce expressivity, the same Ω(n2) lower bound holds for fully programmable
SNNs. The authors also show that any SNN with L edges, programmable weights, delays, and thresholds,
and depth D satisfies

VCdim(N) = O
(
LD log(LD)

)
.

In the case of a network whose depth scales with its width (D = Θ(L)), this upper bound simplifies as
follows:

O
(
LD log(LD)

)
= O

(
L ·Θ(L) log

(
L ·Θ(L)

))
= O

(
L2 log(L2)

)
= O(L2).

C Causal Pieces & Local Lipschitz Continuity

This section provides an overview of the work done by Dold et al. Our work is focused on extending the
implications of their work thus key points which were not defined in the main paper and the key local
Lipschitz continuity proof sketch are in this section.

Definition 2. Non Leaky Integrate-&-Fire (nLIF) is a version of the LIF model in which there is no
membrane leak. Specifically:

dVi(t)

dt
=

1

τs

∑
j

wij

∑
tkj+t∆ij≤t

H
(
t− tkj

)
exp

(
− t−tkj

τs

)
Theorem C.1 (Local Lipschitz Continuity of nLIF Spike Times). Let N0 ∈ N and consider a single non-
leaky integrate-and-fire (nLIF) neuron with input spike times

a, b ∈ P
[
C

(1)
1

]
⊂ RN0 ,

where C
(1)
1 ⊂ {1, . . . , N0} is its causal set (i.e. the indices of all pre-synaptic spikes that occur before the

output spike), synaptic time constant τs > 0, threshold ϑ, and weights satisfying∑
j∈C

(1)
1

W1j − ϑ = δ > 0, ∥W1j∥ ≤ W̄ (∀j ∈ C
(1)
1 ).
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Denote by

t
(1)
1 (x) = τs ln

(∑
j∈C

(1)
1

W1j e
xj/τs∑

j∈C
(1)
1

W1j − ϑ

)
the output spike time given inputs x ∈ RN0 . Then on the causal piece P [C

(1)
1 ],∥∥t(1)1 (a) − t

(1)
1 (b)

∥∥
L∞ ≤ 2 |C(1)

1 | max
(

W̄
δ , τs

δ

)
∥a− b∥L∞.

Moreover, as long as one remains in a region where
∑

j∈C′ W1j−ϑ > 0, continuity is preserved; if the causal
set becomes empty the spike time can jump discontinuously.

Proof Sketch.

Within a causal piece, differentiability. On P [C
(1)
1 ], the causal set C

(1)
1 is fixed, so t

(1)
1 (·) is a composition of

logarithm, exponential, sums and quotients of affine functions of the inputs and weights. Hence it is smooth
there.

One checks directly from

t = τs ln
(
T
)
, T =

∑
j∈C Wje

xj/τs∑
j∈C Wj − ϑ

,

that for each input coordinate xk,∣∣∂t/∂xk

∣∣ = e−t/τs
Wk e

xk/τs∑
j∈C Wj − ϑ

≤ W̄

δ
,

and for each weight Wk, ∣∣∂t/∂Wk

∣∣ ≤ τs
δ
.

By the multivariate mean-value theorem in the ℓ∞–norm,

∥t(a)− t(b)∥L∞ ≤ sup
ξ∈conv{a,b}

∥∇t(ξ)∥1 ∥a− b∥L∞ ≤ 2 |C| max
(

W̄
δ , τs

δ

)
∥a− b∥L∞.

Here the factor 2 |C| arises since there are |C| partials in the inputs and |C| in the weights.

When the input or weights cross into a different causal set C ′, continuity persists as long as
∑

j∈C′ Wj−ϑ > 0.
If one enters a region where no pre-synaptic input suffices to reach threshold, the output spike time jumps
to ∞.

This completes the proof sketch of the work done by Dold et al. For a more formal overview of their
work see the original paper [10]

D Lipschitz Function Composition Example

Example D.1. Consider a vocabulary M where each mi ∈ M is a word in an embedding space s.t. mi is
a RD tensor. WLOG, these words are adjectives with positive or negative sentiment, such as (Happy, Sad,
Good, Bad,...). The goal is to build a network that classifies these words based on their associated sentiment.

Using Time to First Spike (TTFS), a Lipschitz continuous spike encoding function can be created to encode
the spike trains1. For simplicity a simple normalization TTFS function is chosen where

t(mi) =
mj

i −min(M j)

max(M j)−min(Mj)
∗ T, T = Time Constant

1Not all spike encoding functions are Lipschitz continuous without added assumptions. Many like threshold encoding are
not without added assumptions about the input space.
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This encodes an input tensor where all input layer neurons will fire at some time t(mi)
j . We assume that the

t(mi)
j cells are close enough together s.t. that one input does not trigger a neuron to spike multiple times, so

as not to invalidate our SIS setup. Clearly, this rate encoding scheme is Lipschitz continuous. Since the nLIF
spike train inputs are bounded by δ

LGlobal
to ensure Lipschitz continuity with the M input space we construct

a bound for our input samples s.t. |t(mi)−t(mi‘)|L∞ ≤ Lm|mi−m‘
i|L∞ ≤ δ

Lglobal
⇒ |mi−m‘

i|L∞ ≤ δ
Lglobal∗Lm

where Lm is the spike train encoding Lipschitz value and Lglobal is the global Lipschitz value for the nLIF
w.r.t spike times and weights of the nLIF. The goal of this Example is to classify positive and negative
sentiment from single input spikes. Let the output layer consist of two neurons, “pos” and “neg,” with spike
times Tpos, Tneg. Define

ri =
1

Ti
, i ∈ {pos,neg},

ppos =
eβ rpos

eβ rpos + eβ rneg
, pneg = 1− ppos,

and classify by
ŷ = arg max

c∈{pos,neg}
pc.

This decoding function converts these spike times back to outputs. This is an application of the softmax in
the output and this decoding function is Lipschitz with some bound Lo. Since the nLIF SNN is able to be
decomposed into a set of Lipschitz continuous functions, the entire network is Lipschitz continuous s.t. for
some mi,mj ∈M where

|mi −mj |L∞ ≤
δ

Lm ∗ Lo ∗ Lglobal

Then
|F (mi)− F (mj)|L∞ ≤ Lm ∗ Lo ∗ Lglobal|mi −mj |L∞
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