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Abstract

Large Language Models (LLMs) are increasingly excelling and outpacing human performance on
many tasks. However, to improve LLM reasoning, researchers either rely on ad-hoc generated
datasets or formal mathematical proof systems such as the Lean proof assistant. Whilst ad-hoc
generated methods can capture the decision chains of real-world reasoning processes, they may
encode some inadvertent bias in the space of reasoning they cover; they also cannot be formally
verified. On the other hand, systems like Lean can guarantee verifiability, but are not well-suited to
capture the nature of agentic decision chain-based tasks. This creates a gap both in performance
for functions such as business agents or code assistants, and in the usefulness of LLM reasoning
benchmarks, whereby these fall short in reasoning structure or real-world alignment. We introduce
TEMPOBENCH, the first formally grounded and verifiable diagnostic benchmark that parametrizes
difficulty to systematically analyze how LLMs perform reasoning. TEMPOBENCH uses two evaluation
benchmarks to break down reasoning ability. First, temporal trace evaluation (TTE) tests the ability
of an LLM to understand and simulate the execution of a given multi-step reasoning system.
Subsequently, temporal causal evaluation (TCE) tests an LLM’s ability to perform multi-step causal
reasoning and to distill cause-and-effect relations from complex systems. We find that models
score 65.6% on TCE-normal, and 7.5% on TCE-hard. This shows that state-of-the-art LLMs clearly
understand the TCE task but perform poorly as system complexity increases. Our code is available
at our GitHub repository.

1 Introduction

The ability to reason over temporal traces and causality is a core reasoning task in many industry
applications. AWS deploys automata-based reasoning commercially to automate the analysis of
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Fig. 1. Overview of the TEMPOBENCH framework. TEMPOBENCH includes 5 key features for modeling temporal
problem difficulty and uses them to conduct rigorous statistical analysis of reasoning performance. TEm-
POBENCH consists of two tasks: Temporal Trace Evaluation (TTE) and Temporal Causality Evaluation (TCE)

permissions, such as access control lists [4]. Causality is also used for root cause analysis, for
example, in microservices failures [27, 36], showing that many real-world reasoning problems
reduce to temporal causality-like problems [46]. Furthermore, these types of problems remain highly
relevant in natural language settings as well, where temporal reasoning is prevalent, especially in
agentic systems and workflows [5, 10, 47, 52].

In this work, we introduce TEMPOBENCH, focusing on temporal reasoning, a cornerstone capability
of agentic workflows, complex long-horizon reasoning, and a core component of Artificial General
Intelligence (AGI) [8]. It is essential to have benchmarks that go beyond leaderboards and isolate
components of temporal reasoning, such as problem complexity, information density, and horizon
depth, to examine the impact of various confounding factors. TEMPOBENCH is a diagnostically
focused formally grounded synthesis framework that isolates and quantifies, with statistical
significance, the structural factors that make reasoning tasks difficult. When generating tasks, we
can control synthesis parameters to ensure the tasks have a quantifiable measure of reasoning
difficulty. There is a commonly held belief that the difficulty of a reasoning system scales strictly
with its size. Our findings add nuance to this belief; specifically, we find that reasoning over systems
with larger problem spaces and more logical transitions does increase complexity. However, our
results also demonstrate that, in many cases, larger systems with more transitions have a higher
density of connections between states, making it easier for LLMs to track chains of reasoning
through them.

TEMPOBENCH contains two tasks shown in Figure 1: Temporal Trace Evaluation (TTE), which
requires an LLM to determine whether a given automaton accepts a trace of inputs, and Temporal
Causality Evaluation (TCE), in which the LLM retroactively examines the system’s behavior and
determines the necessary set of counterfactuals for a given output. Figure 3 illustrates one of the
reasoning tasks present in TEMPOBENCH.

Current benchmarks cannot isolate the underlying difficulty space of their tasks in a deterministic
and verified framework. TEMPOBENCH deterministically generates reasoning tasks with a verifiable
optimal solution for each task. We check that LLMs can find the optimal solution for these tasks.
Improving on the interpretability of agent reasoning, through a framework like TEMPOBENCH, will
be essential in improving agent performance and increasing the adoption rate of LLM agents in
real-world deployments [40]. To the best of our knowledge, we are the first to provide a dataset
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of exclusively formally verified synthetic temporal reasoning problems that vary in structural
complexity in a controlled way.
Our key contributions in this work are:

(1) Verifiable temporal causality in complex real-world systems. We provide the first
dataset of fully verified temporal reasoning problems for LLM evaluation, based on real-world
systems.

(2) End-to-end controllable synthesis framework for generating data and evaluating LLMs
that leverages reactive synthesis and causality analysis

(3) Empirical evaluation of LLM reasoning limits. We demonstrate that even state-of-the-art
LLMs exhibit negative scaling with increasing problem complexity, revealing systematic gaps
in current reasoning abilities.

2 Related Work
2.1 LLM Reasoning Systems

Recent advances in LLM-powered reasoning agents have driven research on benchmarking and LLM
reasoning capabilities. Methods such as Chain of Thought (CoT) [49], self-consistency [47], and tree
or graph-structured reasoning [5, 52] improve accuracy on reasoning benchmarks by leveraging
intermediate steps or tool use [10]. Other reasoning approaches leverage reinforcement learning
(RL) to teach LLMs reasoning semantics and procedures, such as human feedback [35], or reasoning
traces collected over synthetic algorithmic coding problems [17, 20, 21]. While such benchmarks
are useful for holistic model evaluations, they are less amenable to dissecting the structure of
reasoning or the factors that determine task difficulty. Evaluations often rely on aggregate accuracy
or qualitative trace inspection rather than systematic analysis of reasoning complexity. In contrast,
TeEMPOBENCH grounds reasoning evaluation in formal, parameterized systems, enabling quantitative
study of how reasoning performance scales with structural problem features.

2.2 Real-world performance of LLM agents

Despite their successes in agentic benchmarks, an increasing number of empirical studies highlight
the lack of trust in LLM reasoning systems as a primary hindrance to widespread adoption in
commercial applications [16, 31, 40]. Empirical studies report that concerns about reliability, and the
subsequent need to review code generated through LLM agents manually, are slowing developers
down [40], harming productivity and Al agent adoption. These works underscore the need to
explore structural reasoning behavior and identify interpretable failure modes in LLM reasoning,
making it easier to identify areas of improvement and enabling targeted training towards better,
more reliable reasoning models.

2.3 Reasoning system benchmarks

An increasing number of benchmarks focus on causal reasoning agents. These include mathematical
problem reasoning [14], code reasoning over constrained competition style problems or directory
level issues [9, 30], challenging human-designed logic puzzles [11, 12, 42] or generated quasi-formal
benchmarks that incorporate verifiable structures [22]. Yet, before this work, there was no verifiable
causal reasoning benchmark for temporal tasks.

2.4 Temporal Reasoning Benchmarks

Temporal reasoning benchmarks are difficult to curate because of the complexity of extracting
temporal transitions from real-world systems and of verifying ground-truth causal relationships.
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Fig. 2. Sample knowledge graph showcasing relationship inference. In this case, asked to determine who
has been to the moon, the LLM is highly likely to have prior knowledge of this fact, showing a deficiency of
temporal benchmarks.

Has Been to

State-of-the-art benchmarks are generated through three primary methods: LLM-generated syn-
thetic temporal knowledge graphs, assigning temporal structures to randomly generated graphs,
and human-curated data sets [6, 23, 44, 45, 48, 50]. Temporal knowledge graphs, as shown in Figure
2, are a widely used approach for representing relationships among entities over time. They are
easy to construct and check, forming the basis for benchmarks such as TGQA [50]. These graphs
are generated from real-world or synthetic LLM data. Despite their popularity, they present four
limitations for evaluating temporal reasoning:

(1) Graphs built from real-world data often enable models to rely on prior knowledge,
making it difficult to isolate an LLM’s temporal reasoning ability [23].

(2) Relationships are overly simplistic, an edge between two nodes denotes a relation, but
real systems often involve multiple interacting inputs and outputs that are not all causally
linked.

(3) Task difficulty is hard to quantify, as it depends simultaneously on linguistic, symbolic,
and temporal complexity.

(4) Synthetic data generated by LLMs lacks verifiability and typically requires human
validation.

Testof Time (ToT) [23] is a graph-based benchmark designed to mitigate these issues. ToT uses
randomly generated graphs where edges represent temporal relationships drawn from a predefined
set. The resulting structures are verifiable and can be tuned via parameters such as graph size and
edge count to create more challenging settings. However, ToT still faces key limitations:

(1) Causal relationships cannot be inferred from the graph construction.

(2) The graph structures are not representative of real-world systems, such as Mealy
machines.

(3) Performance remains dependent on the symbolic interpretation of abstract graph
structures.

TemMPOBENCH addresses these challenges by generating temporal traces from automata synthe-
sized from formal specifications describing real-world systems—such as arbiters and controllers [43].
Temporal logic yields temporally rich, verifiable data. Furthermore, causal relationships are explic-
itly synthesized for outputs, ensuring that causal inputs are formally validated. TEMPOBENCH uses
the HOA file structure, a structured, interpretable formalism, to reduce reliance on pure symbolic
reasoning. Ultimately, these formalisms provide more insight into the difficulty of the variant
temporal-reasoning tasks our benchmark addresses.
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3 TEmMPOBENCH

TEMPOBENCH is a benchmark for assessing an LLM’s ability to perform key temporal reasoning
tasks. We use reactive systems specified by temporal logics such as linear temporal logic (LTL) and
synthesized using reactive synthesis [38] to examine various system behaviors and tease out the
temporal aspects of complex systems (See appendix A.1 for more information on reactive synthesis
and LTL). The benchmark and tool are available on GitHub'.

3.1 Task Formulation

To rigorously assess temporal reasoning, TEMPOBENCH focuses on two core tasks: Temporal Trace
Evaluation (TTE), which measures a model’s ability to determine whether a sequence satisfies
temporal constraints, and Temporal Causality Evaluation (TCE), which tests its ability to infer
causal dependencies over time.

(a) Computer-generated visualisation of the system
tin 0 &in 1 & upd /lout 0 & out 1

//

in 0 & lin 1 & upd / out_0 & lout_1
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(b) Visualisation of the inputs generating a trace over the system and the causal explanations of the effect
Trace (first 5 steps)

Step 0 Step 1 Step 2 Step 3 Step 4
upd in_0 out_0 upd in_0 out_0 upd in_o out_0 upd in_0 out_0 upd in_0 out_0
in_1 out_1 in_1 out_1 in_1 out_1 in_1 out_1 in_1 out_1

Causality for XXXX out_0

Step 0 Step 1 Step 2 Step 3 Step 4
upd in_o out_0 upd in_o out_0 upd in_o out_0 upd in_0 out_0 upd in_0 out_0
in_1 out_1 in_1 out_1 in_1 out_1 in_1 out_1 in_1 out_1

Fig. 3. Sample visualization of a tempo-bench problem. This example shows a trace through a system and a
causal explanation of what caused out_0 at step 4. A correct solution on this benchmark identifies the causal
effects of XXXX out_0. Light pink for negative constraints (-1). White for neutral (0). Light blue for positive
constraints (+1)

(1) Temporal Trace Evaluation (TTE). Given a finite-state machine A = (Q, %, 8, g, F) and a
finite trace s, determine whether x is accepted by A. To do so, walk through the transitions of
the state machine, and at each time step T;, verify whether the set of inputs and outputs IUO is
accepted by A. This task unifies elements of runtime verification [32] and world modeling [19].

Ihttps://github.com/nik-hz/tempobench
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The model must determine whether the observed behavior satisfies the temporal constraints
imposed by the system; it must also reason over the system’s transition dynamics sufficiently
to interpret the current state and navigate subsequent transitions within that structured
world. The TTE task is a good measure of how well models perform retrieval from their
inputs, as they must accurately parse and apply the HOA’s state transitions. See Appendix D.1
for the HOA file representation and its automaton counterpart. As such, we use the TTE task
as a litmus test of how well the models understand the HOA file format for state machines
and natural language representations of their traces. Bad performance on this task suggests
that the models are confused at the language level and that problem difficulty is biased by
complex representations rather than by structural indicators.

(2) Temporal Causality Evaluation (TCE). Given a finite-state machine A = (Q, X, , qo, F), a
finite trace 7 generated from A, and an effect e € APO that occurs at some time T} € 7 (where
APO is the set of outputs € 3), generate the causes ¢ € AP at each T < T; that were necessary
for e to occur at T;. At its core, this task tests the model’s ability to reason causally through
time. (for more information on temporal causality and synthesis of temporal causality see
Appendix A.2).

3.2 Data Generation

e N

TLSF Specification LTLSynt Synthesizer Temporal Causality Pipeline Final Causal Effect Trace
SYNTCOMP specification ‘l’ (1) Apply HOAX (0, {"in_2", "out_3"}, 0)
with variable complexi DFA in HOA representation (0, {"in_2", "out_3"}, 0)
Rty P (2) Apply CORP L ez o
fa/'b a/b . 0, {"in_2", "out_3"}, 0
‘ ‘ N (3) Synthesize final automata EOY ﬁ"up_d", "out__S"}), 6))

° a/b ° (4) Evaluate temporal trace
W Hoax representation and trace

& J

Fig. 4. Pipeline flowchart for data generation in TEMPoBENCH. This flowchart illustrates the creation of a
formal controller and then the extraction of key data needed to solve problems 1 and 2. A more detailed
pipeline visualization is provided in Appendix 13

TEMPOBENCH is built on an end-to-end pipeline for generating data for the TTE and TCP tasks
(Fig. 4). We use the SYNTCOMP benchmark [43], a large standardized collection of reactive systems
specified in temporal logic. Each system is expressed in LTL using the TLSF format [28], which
clearly distinguishes inputs, outputs, and their temporal behavior.

(1) Synthesizing Controllers. TLSF files are synthesized into controllers using the LTLsynt
tool [39] from Spot, producing HOA representations that preserve input-output separation
and faithfully implement the temporal logic specification. These HOA controllers provide
ideal structures for executing arbitrarily complex temporal logic formulas.

(2) Generating Finite Traces. By generating numerous finite traces 7z, we obtain high-quality,
formally validated data for our temporal reasoning tasks. We use the HOAX tool [18] to
generate random traces from synthesized systems. The HOAX tool walks through the HOA
file, choosing random legal transitions at each time step and recording the history for a
specified length T steps.

(3) Dataset Construction. This approach allows us to efficiently collect large numbers of correct
system executions, supporting the scalable creation of high-quality datasets for TEMPOBENCH.
We generate an initial dataset of 4,000 TTE traces and 20,000 TCE traces using a standard
laptop CPU with minimal cost and time.
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Listing 1 HOAX generated finite trace over atomic propositions. The first line shows the structure
of the tuples. AP = {in_0,in_1,in_2,in_3,out_0, out_1,out_2, out_3, upd}

# (current state, {inputs and outputs}, next state)

(0, {"in_2", "in_@", "out_2", "out_1", "out_0", "in_1", "out_3"}, 0)
(0, {"in_2", "in_@", "out_2", "out_1", "out_0", "out_3"}, 0)

@, {"upd", "out_1", "in_3", "in_1", "out_3"}, 6)

(6, {"in_0", "out_1", "in_3", "in_1", "out_3"}, 6)

(6, {"upd", "in_0", "out_1", "out_0", "in_1"3}, 13)

(13, {"upd", "in_2", "in_@", "out_2", "out_1", "out_0", "in_1"}, 15)

Consider a finite trace generated from an arbiter as shown in Listing 1. The output illustrates
which APs are true at each step and the transitions taken by the controller. This output, alongside
the HOA, is used directly for the TTE task. After generating a trace and HOA, a temporal causality
controller can be extracted for each output AP® € 7.

Given Causal Inputs: ¢;, ¢; C AP" and Effect: 7 (¢,), ¢o € AP°, T € (G,F,U,X), the
synthesis of temporal causality is the synthesis of the minimum controller over the causal inputs
that guarantees the monitored effect occurs [15].

Algorithm 1 Causal Output Reconstruction for Finite Trace

Require: Finite trace 7 generated by controller A
1: for each time step T; in 7 do
2: Extract the output proposition ¢, at time T;
3 Define the effect: Effect « XX --- Xr, ¢,
4: CORP(A, r, Effect)
5: end for

We are interested in explaining each output generated by the synthesized controllers. We use the
tool Causes for Omega-regular properties (CORP) [24], which is designed to synthesize temporal
causality for the various outputs in each trace. Using Algorithm 1, we extract a causal automaton
that describes the inputs at each timestep up to T; that are required for the effect to be observed
(See example A.1 and Fig. 12 for more details of the synthesis of temporal causality given a specific
output).

3.3 Evaluation Metrics

Causal Effect
Trace

Reasoning Model
Benchmarked LLMs

Output JSON

\ 4

Scoring and
Statistical Analysis

A

Prompt Template

Ground Truth
JSON

Fig. 5. Pipeline flowchart for the evaluation harness that we use to score reasoning model performance

TEMPOBENCH provides a formally guaranteed benchmark set with deterministic ground truth,
enabling fine-grained and rigorous statistical analysis through well-defined measures such as
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precision, recall, and F; scores.
TP TP 2 - Precision - Recall

Precision = ———— Recall = —— F, = —
TP + FP TP + FN Precision + Recall

To evaluate temporal trace acceptance and temporal causality, we define true positives, false
positives, and false negatives for each task. In trace acceptance, a true positive occurs when
the model correctly predicts the next state via the correct input—output pair; false positives and
negatives reflect incorrect transitions or missing valid ones. In temporal causality, predicted causal
relations are treated as positives and compared to the provable causal structure. True positives
capture correctly identified causal inputs. In contrast, false positives and negatives reflect over-
and under-prediction, respectively. These definitions enable balanced evaluation of reasoning
accuracy beyond simple correctness, highlighting how LLMs interpret temporal dependencies
within automata.

TEMPOBENCH exposes five features that let us scale problem difficulty: effect depth, the time
step at which the effect occurs within the trace; system states, the total number of states in the
automaton; transition count, the number of transitions in the system; causal inputs count,
the total number of causal inputs throughout the trace (counting repeated occurrences of the
same atomic proposition); and unique inputs in trace, the number of distinct input propositions
appearing in the trace. We can freely set thresholds for classifying problems as normal or hard. To
make TEMPOBENCH Hard, we select the top n problems with the highest value for each of these
features at generation time. These features allow us to condition evaluation on problem structure,
such as LLM performance on large state systems. Examining failure modes in light of this analysis
helps identify the primary sources of sample difficulty and pinpoint areas for improving temporal
reasoning in LLMs.

4 Experimental Setup
4.1 Sample Selection

We use TLSF specifications from SYNTCOMP [29]. Where applicable, we modify specifications to
increase the number of atomic propositions, ensuring they remain synthesizable within 5 minutes
on our hardware, thereby increasing the diversity and complexity of our problem set and using the
pipeline described in Section 3.2.

4.2 LLM selection and prompting

We use TEMPOBENCH to dissect reasoning performance in several well-known LLMs. We benchmark
GPT-40-mini [33], GPT-40 [34], Claude-3.5-sonnet [2], Claude-sonnet-4.5 [3], and Qwen3-coder-
plus [51]. These models are accessed via their corresponding APIs. Testing the models on 800
samples, 400 for each of the TTE and TCE tasks, we evaluate each model using one-shot prompting
[7]. We include an example of a CoT [49] solution strategy in the prompt and evaluate the models
using the evaluation metrics detailed in Section 3. Our inputs take the form of JSON objects shown
in Listing 2.
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Listing 2 Sample JSON for the causal effect determination task

# Sample of input to the LLM, describing the atomic propositions of a system
# "aps": ["g", "r"]
# JSON Ground Truth
gt_sample_json = {
XXX g": {
"0": ["no constraints"],
"1": ["g and r"J],
"2": ["no constraints"],
"3 ["r"]
}

During evaluation, LLMs must produce exact sentences within the JSON object. Outputting in
this format is unlikely to be a problem, as we did not encounter any difficulties with JSON output in
experiments. Examples of our one-shot prompt, as well as the formatting, are provided in Appendix
3.

5 Results

The results are broken down into two sections. First, we compare the reasoning performance of
various state-of-the-art LLMs on TEMPOBENCH. Then we perform statistical analysis on the model
scores within TEMPOBENCH’s feature space.

5.1 Model Results

Benchmark Summary Across Tasks

causal-hard causal-normal

= F1(AP) = F1(AP)
F1(TS) FL(TS)

8
=
n

trace-hard trace-normal

= F1(AP)
F1(TS)

= F1(AP)
F1(TS)

F1 (%)

g d S
& & »
o

Fig. 6. Visualization of results across all benchmark tasks. TTE normal and hard, TCE normal and hard.
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The F; scores are measured across the two benchmark tasks, split into hard and normal, at the
Atomic Proposition (AP) and Timestep (TS) levels. The F; scores are evaluated against the ground
truth, as seen in listing 2. F;(AP) measures the performance of the model at predicting the correct
APs within each timestep, allowing partial correctness within a single timestep. F;(TS) assesses
model performance by predicting the whole at each timestep.

Example Illustrating F;(AP) and F;(TS). Let the ground-truth trace = and model prediction 7
be:

m=[{a b} {b.ch{c}], & =[{ach{b}{cd}]
F1(AP) compares individual atomic propositions within each timestep. For instance, overlaps occur
at t; : {a}, t : {b}, t3 : {c}, yielding partial matches. Thus, F;(AP) rewards local overlap: P = %,
R =1.0, F; = 0.86. F;(TS) considers each timestep correct only if all APs match exactly. Since none
align ({a,b} # {a,c}, etc.), F1(TS)= 0. This captures full temporal correctness rather than partial
AP overlap.

Table 1. Benchmark Summary Across Tasks

Model Fi(AP) Fi(TS) Task
anthropic/claude-3.5-sonnet 14.1% 12.5% causal-hard
anthropic/claude-sonnet-4.5 8.8% 3.6%  causal-hard
openai/gpt-40 5.1% 5.9%  causal-hard
openai/gpt-4o0-mini 6.7% 85%  causal-hard
qwen/qwen3-coder-plus 6.0% 5.4%  causal-hard
anthropic/claude-3.5-sonnet 61.1% 61.5% causal-normal
anthropic/claude-sonnet-4.5 54.4%  56.7% causal-normal
openai/gpt-4o 36.2%  38.6% causal-normal
openai/gpt-4o0-mini 44.6% 47.0%  causal-normal
qwen/qwen3-coder-plus 37.7%  39.6%  causal-normal
anthropic/claude-3.5-sonnet 63.7%  69.5%  trace-hard
anthropic/claude-sonnet-4.5 80.1% 70.1% trace-hard
openai/gpt-4o0 22.6% 63.5% trace-hard
openai/gpt-4o0-mini 65.9%  49.6% trace-hard
qwen/qwen3-coder-plus 79.2%  65.5%  trace-hard
anthropic/claude-3.5-sonnet 46.9%  65.7% trace-normal
anthropic/claude-sonnet-4.5 54.1% 67.7% trace-normal
openai/gpt-4o 27.0% 56.6% trace-normal
openai/gpt-4o-mini 49.4%  42.2%  trace-normal
qwen/qwen3-coder-plus 61.2% 58.9% trace-normal

Roughly, Fi(AP) asks how well models get mostly correct answers at most time steps, while
F1(TS) asks how well models get all the correct answers for an entire timestep. There is no strong
relationship between their performance on TTE and TCP tasks, suggesting these are truly distinct
temporal reasoning tasks. Table 1 shows our results across various LLMs.

Our analysis of absolute model performance demonstrates that TEMPOBENCH presents a chal-
lenging yet tractable benchmark. All evaluated models successfully solve a nontrivial portion
of the problems—partially or entirely—showing that the tasks are well-calibrated in difficulty.
Notably, TCE-hard proves substantially more difficult than TCE-normal or either TTE variant,

, Vol. 1, No. 1, Article . Publication date: November 2025.



Mechanics of Learned Reasoning 1: TEMPOBENCH, A Benchmark for Interpretable Deconstruction of Reasoning System
Performance 11

F1 Score Time Step Evaluation Correlation with HOA States and Transition Count
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Fig. 7. Correlation scores for log;,(transition_count) and log,,(hoa_states) versus F;(TS) scores at the
temporal step, with corresponding p-values denoting statistical significance
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Fig. 8. Correlation scores for log,,(transition_count) and log,,(hoa_states) versus F;(AP) scores at the
Atomic Proposition step, with corresponding p-values denoting statistical significance

validating the effectiveness of our difficulty features. This trend is consistent across both F;(AP)
and F;(TS) metrics. Interestingly, models exhibit higher scores on temporal-hard AP but lower
scores on temporal-hard Timestep tasks. This discrepancy arises because hard samples contain
more inputs—allowing models to achieve higher overlap scores within individual timesteps without
genuinely resolving the underlying temporal dependencies.

Figures 7 and 8 show correlations between F;(AP) scores and transition count and system
states for the TCE task. Each scatter plot includes a line of best fit and correlation statistics, showing
that the negative relationships between these parameters and the F;(AP) scores are statistically
significant. The p-value of p < 0.001 indicates that observing such a negative relationship by chance
is extremely unlikely. These graphs provide a useful in-depth understanding of the specific LLM
reasoning capabilities. For example, it is surprising that Claude-Sonnet-3.5 outperforms the newer
Claude-Sonnet-4.5 on TCE tasks. As shown in Figure 7, F;(AP) scores for Claude-Sonnet-4.5 exhibit
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stronger negative correlations with transition count and HOA state (R = —0.71 and R = —0.70)
compared to R = —0.62 for Claude-Sonnet-3.5, suggesting that the earlier model generalizes more
robustly and is less sensitive to increases in system complexity. We hypothesize that recent LLMs
are increasingly optimized for the multi-context protocol (MCP), prioritizing flexible tool and agent
coordination over deep internal state modeling, which may explain their weaker performance on
tasks that require reasoning over large latent state spaces [41].

F1 (Atomic Proposition) Correlation with Unique Inputs, HOA States, and Transition Count (F1_ap)
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Fig. 9. Correlation scores for log,,(unique_inputs_in_trace), log,,(hoa_states), and
log,,(transition_count) versus F; scores at the Atomic Proposition step, with corresponding p-
values denoting statistical significance. This figure covers the TTE task.

The TTE task reveals a different sensitivity pattern across features as seen in Figure 9. There is a
negative correlation between the number of unique inputs in the trace and the F;(AP) score for all
models except for GPT-40. There is a positive correlation between F;(AP) and the number of system
states for all models except GPT-40 and Claude-Sonnet-4.5, which exhibit neutral and weak positive
correlation, respectively. Surprisingly, GPT-40 performs much worse than other similar models
across all of these tasks, including GPT-40-mini, which not only outperforms GPT-4o but is also on
par with newer models like Claude-Sonnet-4.5. The positive relationship between system states
and F;(AP) score illustrates that the model only needs to know its current state. Figure 9 shows
that modern LLMs have become very strong at symbol mapping and retrieval, yet still struggle to
perform more complex temporal reasoning. The results in figure 9 show a negative correlation with
the number of inputs; the number of constraints on transitions between states mainly determines
TTE difficulty. Importantly, the high performance on TTE across both hard and normal conditions
indicates that all of these models can understand the HOA format. This demonstrates that while
there is variation across models, the HOA file format is not a limiting factor in performing this task.

5.2 Statistical Analysis

We report precision, recall, and F; scores using two evaluation schemes on the Timestep and AP
levels. Although results aggregate all models, per-model parameter—F; trends remain consistent
(see Appendix D.2 for per-model SHAP plots and R?). The results in Table 2 highlight the increased
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Temporal Causality Evaluations Benchmark Difficulty Precision Recall F;Score

Time Step Evaluation Hard Benchmark 12.5% 5.4% 7.5%
P Normal Benchmark 62.8%  68.6%  65.6%

. .. ) Hard Benchmark 19.9% 5.4% 8.5%
Atomic Proposition Evaluation Normal Benchmark 57.1% 62.1% 59.5%

Table 2. Temporal Causality Performance metrics comparing Time Step and Atomic Proposition evaluations
across benchmark difficulties aggregated across all models

difficulty of this task for more complex systems. We further illustrate this with SHAP plots derived
from random forest models trained to predict F;(TS) and F;(AP), respectively. Random forest
regression is used because the F; distributions deviate from normality as shown in Appendix D
making simpler models such as Ordinary Least Squares regression inappropriate [1]. The SHAP
plots in figure 11 highlight both the relative importance of each feature and the direction of its
influence on the F; Score. For instance, the number of system states emerges as a key feature:
higher state counts generally negatively affect F;, and when the relationship is positive, the effect
is comparatively weak. Lastly, the features are listed from most important to least important. The
random forest models for predicting F;(AP) and F;(TS) achieve R? scores of 0.646 and 0.66.
R? represents the amount of our F; scores explained by the predictors. These R? scores indicate
that in our temporal causality task, the majority of the variation in the F; score is explained by
the customizable parameters of the benchmark. The remainder is explained by variation in LLM
performance on temporal causality. Given the strong model fit indicated by the R? score, the SHAP
values provide meaningful insights into how increasing automaton complexity hinders LLMs’
ability to perform temporal credit assignment. Features such as the number of states, transitions,
and unique inputs emerge as key drivers of difficulty, aligning with intuition. In contrast, traces
with more causal inputs show higher F; scores because a greater number of distinct causes reduces
the need for the LLM to model long-range dependencies. When traces contain few inputs, the
model must infer relationships from limited information, whereas traces with many causal inputs
provide a denser causal structure.

Temporal Trace Evaluations Benchmark Difficulty Precision Recall F;Score
Time Step Evaluation Hard Benchmark 61.8% 60.3% 61.0%
p Normal Benchmark 54.3% 51.2% 52.8%
Atomic Proposition Evaluation Hard Benchmark 60.0% 74.0% 66.3%
P Normal Benchmark 483%  502%  49.2%

Table 3. TTE Performance metrics comparing Timestep and AP Evaluation across benchmark difficulties

Table 3 reports performance on the trace acceptance task, evaluated at two levels: (1) TS, and
(2) AP level. The TS results show that TTE is an easier task than TCE, demonstrating that LLMs
struggle to model long-range temporal dependencies 3. Interestingly, the AP analysis reveals that
the hard benchmark is less challenging than the normal one. This is because larger systems contain
more atomic propositions, increasing opportunities for partial credit rather than reflecting. Yet
this demonstrates that, in some temporal reasoning tasks, such as TTE, simply having larger
state machines does not make the task more difficult. We forgo fitting a random forest regression
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SHAP Feature Importance for Temporal Step F1 Score
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Fig. 11. SHAP Beeswarm plot representing feature importance and correlation with Temporal Causality
F;Scores at Temporal Step

model to the F; scores, as this task primarily depends on only two parameters: system states and
transition count. The convergence of precision and recall for the TTE task demonstrates that
LLMs genuinely understand the HOA file format rather than struggling with parsing. If precision
and recall diverged—with the model either over-predicting (high recall, low precision) or under-
predicting (high precision, low recall)—this would indicate random guessing or parse errors rather
than systematic understanding.
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6 Future Work

LLMs trained on mathematical and code reasoning tasks exhibit consistently stronger general-
purpose reasoning capabilities [26]. We see TEMPOBENCH as a gateway to being an effective tool in
training LLMs to perform structured temporal reasoning in ways that neither ad-hoc generated
nor Lean proof-based systems are able to. TEMPOBENCH offers a uniquely rich source of formally
grounded temporal reasoning traces over deterministic systems, which may be able to help models
generalize towards broader reasoning tasks requiring causal credit assignment, planning, and
multi-step prediction. Future work would utilize TEMPOBENCH to generate training data for LLM
reasoning agents, extending their temporal reasoning ability.

7 Conclusions

In summary, we present TEMPOBENCH, a generative, synthetic, and formally verified benchmark
for temporal reasoning. This diagnostic-focused benchmark is created using formal methods tools
for reactive program synthesis and causality analysis. In this work, we introduce TEMPOBENCH
as a formally grounded benchmark for evaluating temporal causality and credit assignment, and
demonstrate its utility not only as a benchmark but as a full diagnostic pipeline. TEMPOBENCH
benchmarks offer critical advantages for analyzing and interpreting LLMs, including verifiability,
compositional structure, and scalability to large state spaces. Unlike prior temporal reasoning
benchmarks that primarily serve as leaderboards, TEMPOBENCH is explicitly designed as a diagnostic
tool — enabling researchers to probe failure modes, trace causal reasoning, and study alignment
with formal system dynamics, rather than merely measuring task performance. Using TEMPOBENCH,
find that reasoning over systems with larger problem spaces and more logical transitions does
increase complexity. However, our results also demonstrate that, in many cases, larger systems with
more transitions have a higher density of connections between states, making it easier for LLMs to
track chains of reasoning through them. Our results show that temporal causality is complex for
LLMs, with F; score on TCE tasks dropping by 54.6% on average across TS and AP. By identifying
the structures, such as system states and transition counts, we aim to help diagnose these system
failures so that future LLMs can perform better on such temporal reasoning tasks.
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A Synthesis Preliminaries
A.1 Linear Temporal Logic & Reactive Systems

Reactive systems appear across a wide range of domains, from traditional hardware and software to
more abstract environments such as biological systems. Temporal logics, most prominently Linear
Temporal Logic (LTL) [37], provide a formal language for specifying the desired behavior of such
systems over time. We consider LTL, which has the following syntax.

¢ == Tlalp v ol-~e|XeloUe,

where a € AP is an atomic proposition, {A, =} are the common Boolean operators of conjunction
and negation, respectively, and {X, U} are the next and until temporal operators, respectively.

Additional temporal operators include F(finally), and G (always), which can be derived from the
syntax above.

Building on LTL specifications, reactive synthesis has extended the Church Synthesis problem [13]
to automatically construct implementations specified from LTL specifications [38]. This reactive
synthesis can be framed as a two-player infinite game between an environment and a system
player. The set of atomic propositions is partitioned into inputs I = {iy, i1, . .., in} (controlled by
the environment) and outputs O = {0g, 01, ...,0,} (controlled by the system). At each round,
the environment first assigns values to all inputs, then the system assigns values to all outputs,
producing an infinite trace over I U O. The system wins if it has a strategy to choose outputs such
that for every possible sequence of inputs, the resulting infinite trace satisfies the LTL specification
¢. If such a winning strategy exists, the specification is realizable and a corresponding Mealy
machine can be extracted. The outputted Mealy machine provides a temporal relationship between
the atomic propositions I and O that inherits formal guarantees of the specification ¢.

A.2 Temporal Causality

Causality in temporal systems is more complicated than the analysis of the underlying LTL spec-
ification. While LTL specifications describe relationships between inputs and outputs, temporal
causality is interested in identifying the minimum causal set over a trace 7 which describes each
of the inputs necessary for some effect E to occur. Specifically, given a system 7 with traces
7 € Traces(7), let C C (27)® be a cause property over the inputs and let E C (29)® be an effect
property over the outputs [15]. We say that C is a cause of E on « in 7~ if three conditions hold:
(1) r=Cand 7 = E
(2) under some counterfactual variation of the inputs, removing or altering C leads to a trace n’
in which the effect property E no longer holds, which ensures the effect depends on the cause
(3) no strict subset C’ c C also satisfies these two conditions, guaranteeing that the cause is
minimal and not redundant

Identifying the causal set for some trace is a synthesis problem that identifies, given a Trace =
and system T, what inputs at each time step are necessary to produce the desired output. In our
credit-assignment work, we focus on outputs at particular time steps. The resulting effects take the
form

XX ... X AP°.

Our goal is to identify which inputs at each time step t; € x produce this effect E, across all traces
with this counterfactual structure, and from this synthesize the minimal controller. This controller
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represents the minimal causal inputs necessary to produce the desired effect at a time step ¢; [24]. We
use an LTL specification of a music app from the syntcomp benchmark that synthesizes a controller
managing the interplay between user inputs (play/pause button presses, leaving/resuming the app)
and system outputs (play/pause commands, internal control state) [25] to illustrate the difference
between simple credit assignment of a single input-output pair and full causal temporal reasoning.

[Biichi]

leave_app & pause_button !leave_app & !pause_button leave app & !'music_playing & play_button

Fig. 12. Temporal Causality HOA for Trace of Music Player

Example A.1 (Music Player App). Given the specification:

Q= (G(ﬂ(pause_cmd/\ =(play_cmd Vv ctrl) &
—(play_cmd A =ctrl & ctrl A =play_cmd) A —pause_cmd))
A G(leave_app — —play_button A —pause_button) A G(—(play_button A pause_button))
A G(=(leave_app A resume_app)) A G(play_cmd — X (music_playing W pause_cmd))
A G(pause_cmd — X (~music_playing W play_cmd)))

— (G(play_button — play_cmd) A G(pause_button — pause_cmd)
A G(pause_cmd — leave_app V pause_button) A G(play_cmd — —leave_app)
A G(pause_cmd A pause_button — —play_cmd W play_button)
A G(music_playing A leave_app — (—(pause_cmd A
(=(—pause_button — play_cmd) W (—pause_button — play cmd) A —=leave_app)) W
pause_cmd A (= (—pause_button — play cmd) W
(—pause_button — play_cmd) A —leave_app) A leave_app)))
with
I = {leave_app, music_playing, pause_button, play_button, resume_app}, O = {ctrl, pause_cmd, play_cmd}
Given ¢, consider the trace
7 = {pause_cmd, leave_app, pause_button; play_button, play_cmd, leave_app, play_button}?

and let
E = XX play_cmd.

The instantiation of temporal causality as seen in 12 for the music player T’s behavior in 7z
demonstrates that the set of inputs required to trigger play_cmd at #; is much greater than the
play_button input at t,, as implied by ¢. Understanding these unintuitive relationships helps develop
deeper temporal reasoning about various reactive systems and enables a more efficient way to
generate temporal reasoning for LLMs in training and chain-of-thought (CoT) prompting.

20nly positive atomic propositions are denoted.
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causal automata

Temporal Trace
Evaluation

CORP performs counterfactual
reasoning, making changes in the
input space to determine what inputs
are causal

S
acc-name: Buchi HOAX

controllable-AP: 1
BODY- Exm=(aAb, ah-b, aAb ah-b) (fv((“v b,))» v
State: 0 0, (o b))
[oatjo b (o 5,0
[0&1]1 > 670
State: 1
ro
—END--

Fig. 13. Complete pipeline flowchart for data generation in TEMPOBENCH. This flowchart illustrates in greater
detail the creation of a formal controller and then the extraction of key data needed to solve problems 1 and 2

C Evaluation
C.1  Prompt Constructors

We use the following prompt templates to format the inputs to the LLMs. We give examples to
ensure the models understand the required format, especially concerning the JSON formatting. The
trace task example can be found on the github repository.
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Listing 3 Sample one-shot prompt for the causality example. It highlights the formatting require-
ments concerning the output. We provide an NL explanation to the reasoning agent that does not
leak information about the task nature.

# Causality example

one_shot = """Prompt:

This is a credit assignment task over time.

Your goal is to identify the minimal set of inputs that caused a

given effect in the automaton. If any one of these inputs were missing,
the effect would not have occurred.

You are given an automaton (HOA format) with APs:
[|gl’ lr|]

Automaton:

HOA: v1

States: 6
Start: @

AP: 2 "g" "p"
acc-name: all
Acceptance: 0 t
properties: trans-labels explicit-labels state-acc deterministic
controllable-AP: 0
--BODY--

State: 0

[lgl1

State: 1

['gl 2

State: 2

['g] 3

State: 3
[lg&!r] 4

[g&r] 5

State: 4

[lg] 4

State: 5

[g&r] 5

[!g&!r]l 5
--END--

Trace:
1g&!r;!g&r;!g&!r;g&r;g&r;!g&!r;g&r;g&r;g&r;g&r;cycle{1}

Effects to analyze:
['XXX g']

Explain the causal constraints step by step.
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# Second part of the causality sample

i

Labe
Caus

1:
al explanations:

Effect: XXX g (showing first 4 steps of trace)
The relevant portion of the trace is: !g&!r;!g&r;!g&!r;g&r
Reasoning over the transitions for the first 4:

These are the corresponding state transitions to the automaton:

lg and !r, the automaton moves to state 1.
r, the automaton moves to state 2.

lg and !r, the automaton moves to state 3.
g and r, the automaton moves to state 5.

for grading to work properly before giving your answer)

From state @, on inputs
From state 1, on inputs
From state 2, on inputs
From state 3, on inputs
(Add in this line below
### JSON Ground Truth #it#:
T json
{
"XXX g": {
"o": [
"no constraints"
1,
"1t [
"no constraints"
1,
2" [
"no constraints"
1,
"3": [
e
]
}

i
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D Figures
D.1 HOA with Corresponding DFA

Listing 4 HOA describing a binary mod 3 DFA
dapp:sample-dfa

HOA: v1

name: "Binary mod 3 DFA"
States: 3

Start: @
AP: 2 "@" "1"
acc-name: Fin
Acceptance: 1 Fin(0@)
--BODY--
State: 0 {0}

[e] o

[111
State: 1

[0] 2

[1] o
State: 2

[0] 1

[1] 2
--END--

[co-Buchi]

Fig. 14. Sample of a binary mod 3 DFA

D.2 SHAPLEY Plots On Model Level and R? Scores

Model Time Step R*> | AP Step R?
Claude Sonnet 3.5 0.497 0.507
Claude Sonnet 4.5 0.772 0.613
Qwen 0.349 0.271
GPT-40 0.429 0.440
GPT-40 Mini 0.781 0.776

Table 4. R? scores for each model on Time Step and Atomic Proposition (AP) Step evaluations.

D.3 F; Score Distribution Analysis
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Fig. 15. Shapley plots demonstrate that the behavior observed at the statistical results level is consistent at
the individual model level, Time Step Evaluation.

Shapley Beeswarm Charts for Time Step Evaluation on Individual Models
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Fig. 16. Shapley plots demonstrate that the behavior observed at the statistical results level is consistent at
the individual model level in Atomic Proposition Evaluation.

Shapley Beeswarm Charts for Time Step Evaluation on Individual Models
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Fig. 17. Distribution of F; scores for Timestep Tem-
poral Causality
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